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ABSTRACT

This report contains the theoretical background material for a

linearized internal gravity wave normal mode computational scheme,

implemented at the Defence Research Establishment Pacifi o-,Currents

predicted by this model have been used extensively in the production of

simulated synthetic aperture radar images of internal wave signatures

produced by moving vessels. A full derivation is given for the steady state

internal wave fields produced by a distribution of fluid volume sources

undergoing common uniform horizontal motion in a finite depth ocean.
Features include a full normal mode expansion of the steady sta

incorporating both the radiating internal wave field and the localized

l disturbance near the source. Effects of background shear are not considered.
"-A modification of the standard eigenfunction expansion leads to accelerated

convergence of the modal sums. Computation of all relevant fluid dynamical

fields (3-component velocity, density, pressure and vertical particle

displacement) is considered. Both sub- and super-critical source speeds can

be handled. An extensive discussion of the effects of interior regions of

high evanescence for certain wavenumber regimes shows how the eigenfunction

expansion can be readily modified to handle such regions in a

straightforward manner. The method properly accounts for trapping of energy
generated within multiple thermoclines and may be of interest in certain
underwater acoustics problems, where the mathematics are similar. Efficient

computation of extensive sets of field data is discussed. Examples are

presented for d submerged source in the N.E. Pacific Ocean. Also included is

a brie,' comparison with measured surface-ship-generated internal wave

current daLd.

.... .
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1. INTRODUCTION

Much of the research effort of the Fluid Dynamics Group at
D.R.E.P. has been directed towards the remote sensing of internal wave wakes

using various devices, including Synthetic Aperture Radar and an Infrared

Scatterometer'. A necessary adjunct for prediction of the performance of

such devices has been a theoretical model to predict realistic internal wave

current fields. These current fields may then be used to compute simulated

remote sensing imagery. Applications are beyond the scope of this report,

* which describes the theoretical background to the internal wave

computational model.

The density of the Earth's oceans is generally non-uniform, and
especially so in depth, due to the effects of gravity, temperature, and

salinity. This stratification of density allows the possibility of internal
wave propagation due to buoyancy effects. In a stably stratified fluid, the

density generally increases with depth. Thus a fluid particle which is

displaced slightly up (down) will be heavier (lighter) than the surrounding

fluid, and so be subject to a restoring buoyant force towards its/ equilibrium position. Hence any perturbation of a stably stratified ambient
fluid will generally produce internal waves.

Generating mechanisms, both natural and artificial, may be of

many types. The mechanisms of interest here are effects due to moving

submerged bodies, which can lead to production of internal waves in several

ways. One such mechanism is "wake collapse"2 '3 , which involves mixing of the
density by the source, followed by collapse of the density in the wake to

the ambient stratified values after passage of the source. A second

mechanism is the so-called "hull effect" which involves the displacement of

fluid particles from their equilibrium levels due the action of the hull.
This will be used for illustrative purposes later. However, the actual

details of the source model have little direct bearing on the normal mode

i expansion which forms the core of this report.
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Full computation of an internal wave field produced by a

realistic submarine would be an extremely difficult task. It would require

solution of the full nonlinear fluid dynamical equations, incorporating such

a variety of effects as the detailed shape of the source, variations in

ocean depth, ambient currents, ambient surface wind waves, effects due to

the Earth's rotation and lateral boundaries, non-uniform source motions, and

so on. In order to compute model internal wave fields at a reasonable cost,

approximations are necessary.

It will be assumed throughout that the ocean is an

incompressible, inviscid, vertically stratified4 fluid. Effects due to the

Earth's curvature and rotation will be neglected, as will non-uniform ocean

depths and background currents. Thus the basic ambient state is a quiescent

finite depth ocean of infinite horizontal extent.

The source model for the hull effect is taken to be a

distribution of fluid volume sources. It is well-known5 that in potential

flow theory, elementary distributions of such sources in a uniform stream

can produce closed streamsurfaces that resemble, and so may serve as models

for, realistic hull shapes. In a linearized model, where internal wave

effects are assumed small, it is expected8 that the basic model reasonably

approximates the desired rigid hull, there being minor perturbations due to

the stratification. For purposes of illustrating the methods discussed in

this report, the only source to be used is a simple Rankine ovoid.

However, the internal wave model has been used extensively with other source

distributions.

Further approximations include linearization of the fluid

dynamical fields about the ambient state, and the Boussinesq

approximation7,8. Such approximations are used extensively4 ,6 . 9',1 for
studies of this type and provide an efficient computation scheme via a

normal mode expansion technique. Finally, it is assumed that the source is
in uniform horizontal motion, so that transient effects due to startup or

manoeuvering of the source are not implemented in the model. Such transient

effects are briefly discussed in the text, however.
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This report is then basically concerned with numerical

implementation of the above-mentioned normal mode expansion. As noted

earlier, actual source details are of little consequence for the discussion,

and an elementary source as mentioned above is used for purposes of

illustration.

Section 2 presents the details of the model approximations, and

the pertinent linearized fluid dynamical equations. The physical

perturbation quantities of interest are the pressure, density, velocity and

vertical particle displacement from equilibrium. It is shown how these may

all be expressed in terms of the displacement field, which in effect serves

as a generalized potential. This solution of these basic equations in

Fourier space is also discussed.

Section 3 treats the solution of the basic differential equations

of the displacement Fourier transform. The approach is based on a Green's

function technique. Partial fraction expansion of the Green's function using

complex variable theory allows extraction of the singular part in closed

form. The remaining sum then has accelerated convergence over the customary6

direct eigenfunction expansion. The section concludes with expressions for

the general Fourier space solutions with an arbitrary source. These could

serve as a departure point for full time-dependent computations for

arbitrary sources in general motion.

Section 4 is concerned with specialization to a source which is

abruptly "turned on" at t=O and is in steady uniform horizontal translatory

motion thereafter. This leads to a simplification in the general solutions.

It is noted that the resulting expressions are non-singular and so could be

used for time-dependent computations including transient effects due to

startup.

In Section 5, expressions are derived for the ultimate steady

state fields. This is accomplished by rcfcrencing coordinates L the moving
source, and considering the asymptotic forms of the fields as time
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progresses. The physical field solutions are reduced to double Fourier

inverse contour integrals.

Section 6 is devoted to inversion of the along-track Fourier

inversion via residue theory. Some preliminary discussions concerning

eigenvalues are included, to be expanded in Section 7. Notes concerning

general source terms include consideration of the consequences of mass

conservation. The section concludes with the main results of the report,

which is a complete eigenfunction expansion of the fields, expressed as a
single cross-track inverse Fourier transform. The expansion includes not

only terms representing the usual far-field radiated internal wave wake due

to real eigenvalues, but also contributions from imaginary eigenvalues which

contain near-field information toward the source extremities.

Numerical details and techniques are discussed at length in

Section 7. After a general discussion of solution methods for the

differential equation (which is necessary for computation of eigenvalues),

the model is restricted to a multilayer type, and the advantages discussed.

In particular, the method may be thought of as suitably joined local WKB

approximations to the eigenfunctions, rather than a stepped approximation to

a physical profile. Problems commonly arise in modelling realistic profiles

which may contain interior layers or groups of layers which are highly

evanescent in certain wavenumber regimes. The problems and resolution are

illustrated using a simple symmetric three-layer model. It is explained how

such regions can cause both multiple eigenvalues and exponential overflow on
a digital computer. The exponential overflow is easily handled. Simple

methods are discussed for stable computation of slightly modified
eigenfunctions in the presence of such multiple zeros. Basically the

standard mathematical eigenfunctions are modified by regrouping terms in the

eigenfunction expansion. This is accomplished by choosing interior reference

depths for integration of the eigenfunctions in a manner dependent on the

profile and particular associated wavenumber. The resulting modified

eigenfunction set properly accounts for channelling of energy in interior
ducts and can accommodate, for example, multiple sources on opposite sides
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of highly evanescent regions. A brief comment is included on the effect of

such regions on "global matrix ''11 methods used in acoustics, where the

mathematics is similar to that in the internal gravity wave problem. The

section concludes with a discussion for setting up the integrands required

for Fourier inversion. Comments for an efficient computational scheme for

computing extensive sets of field points are included.

Section 8 contains examples of internal wave fields computed

using the methods discussed. A slightly smoothed version of a stability (N2)

profile computed from measured summertime12 CTD data taken at Ocean Station

P (500N,1450W) is used for the examples. This profile contains two distinct

thermoclines which gives rise to some of the problems related to interior

• evanescence mentioned above. Results are presented for two source speeds,

one of which results in purely diverging waves, whereas the other generates

7 •. a transverse component. Examples are also given with the source travelling

in either of the two thermoclines.

A brief comparison with measured data is considered in Section 9.

!.
....

.......
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2. MODEL AND BASIC EQUATIONS

Relative to Cartesian coordinates (x,y,z), the model under

consideration consists of an inviscid, adiabatic fluid of infinite

horizontal (x,y) extent and of finite depth, d, in the vertical z-direction.

Coordinate z measures depth positively downv 'd from a mean free surface at
z=O, in the direction of a uniform gravitational field g. For time t<O, the

fluid is at rest and the density po(z) is stratified in depth. The
stratification is assumed stable, so .tat the density gradient p.(z) is

nowhere negative. Additionally, it is issumed that this gradient is bounded
within the fluid, thereby requiring that the ambient density be at least

continuous for O<z<d. At time t=O, a distribution S of volume sources is
introduced into the fluid, which results in the generation and subsequent
evolution of an internal gravity wave field. This report is concerned with

computation of the associated fluid-dynamical fields in a linear
approximation.

The ambient or background state is characterized by the density

po(z) and pressure p,,(z) xvhich are related byB p,(z) g po(z), the prime

denoting differentiation with respect to z. For t0, the dynamical fields of
interest are the total pressure PT E po(z) + p, the total density PT Po

p, the x-, y-, and z-components of velocity denoted respectively by u, v
and w, and the vertical displacement (positive downwards) • of fluid

particles from their equilibrium positions. In a linear approximation, the

perturbation fields (p,p,u,v,w,ý) are assumed sufficiently small that any
terms involving products of two or more of these quantities may be neglected

in the dynamical equations. The resulting linearized equations are

(1) Conservation of mass (volume) V.u S 5, (2.1a)

(2) Invariance of density Op/at + p•(z)w - 0, (2.1b)

(3) Conservation of momentum pOOu/Ot + Vp - pgz 0 0, and (2.1c)

(4) Definition of displacement w = dQ/t. (2.1d)
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In these equations,^ denotes a unit vector along the appropriate coordinate.

At this stage, all perturbation fields are functions of the four variables

(x,y,z,t).

The velocity and density perturbations are readily eliminated

from Equations (2.1), leaving a pair of coupled differential equations

Op/Oz = -po(z) ( N2 + 2/Ot2) ¢, (2.2a)

and

p0 (z) O03/Ot 20z = V2 p + po(z) OS/Ot (2.2b)

1 / for the pressure and displacement. In Equations (2.2), V2 a 02 /,X 2+02/Oy2

denotes the horizontal Laplace operator, and the Brunt-Vaisala (or

intrinsic) frequency N is defined8 by

SN2 (z) g p(z)1 Po(Z). (2.2c)

This fundamental quantity (N) represents the local natural frequency of

I oscillation of a fluid particle slightly displaced from its equilibrium

position, and is real on account of earlier assumptions.

For present purposes, it proves convenient to eliminate pressure

from (2.2), leaving a single equation

( po (O2 ¢~'lt 2)' * P0 V2 (N2 + 02/at 2 ) ' (PoOS/Ot)' (2.3)

for the displacement. The coefficients depend only on z, so subsequent work

is simplified by application of Fourier transforms in x, y, and t.

Specifically, the triple transform of a function f(x,z,t) is defined by

1 2 eik.. -~

f(k,z,•) f] d- dxe6te i it f(x,z,t), (2.4a)

-= 0

N
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and the inverse operation is given by

f(x,z,t) 2-i ff d2 k e-kx f dw ei't f(k,z,c), (2.4b)
41r C-

where x = xx+yy and k a kXx+k~y denote horizontal position and wave-number
vectors respectively, and boldface Roman type denotes a two-component
vector. The wave vector k is initially real, whereas the frequency W has a

Snegative imaginary part to ensure convergence of (2.4-' 'or 'reasonable'
source functions. Then 7 will be an analytic function of w in the half-plane
Im w 9 c, and Equation (2.4b) then guarantees quiescence prior to t=O in
keeping with the imposed initial conditions.

At this point the customary8 Boussinesq approximation is adopted.
Thus the generally small terms p;(z)/po(z) are neglected in the dynamical

2equations, except when multiplied by g (cf N ), in which case they represent
the buoyancy forces which allow the internal waves to propagate. Equation
(2.3) represents the general case. Under the Boussinesq approximation it
simplifies and Fourier transforms to the simple second-order ordinary

differential equation

- k2 [1 - N= 'l(i6) (2.5a)

Complete specification of the problem requires boundary conditions. An

appropriate condition at the flat impermeable bottom z=d is14 one of zero
particle displacement. Under the Boussinesq approximation, attention is

7 focused on purely internal wave motions, which will have generally
J *'negligible amplitudes at the free surface. The appropriate condition is13

therefore one of vanishing displacement at z=O also. The boundary conditions

0, ( z=O, d ) (2.5b)

( and differential equation (2.5a) form a boundary value problem in the
variable z for the particle displacement transform •. All other fields maybe computed from the solution to (2.5) using the following equations
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obtained from the transformed versions of Equations (2.1) and (2.2)

Pressure p = -iw po(z) ( iwZ' - k ) 2k, (2.6a)

Horizontal velocity : h = k p I (p 0o), (2.6b)

Vertical velocity : = iW •, and (2.6c)

Buoyancy force : P = -PO N2 ?. (2.6d)

At this point, note that it follows immediately from (2.6d) and (2.4b) that

in the physical domain,42
k2•.• .. g p(x,z,t) = -po(z) N2(z) ¢(x,z,t), (2.7)

li i.e. the buoyancy is directly proportional to the displacement at any fixed

depth, and will not be given further consideration.

4,



3. GENERAL SOLUTIONS OF THE BASIC EQUATIONS

The inhomogeneous boundary value problem (2.5) can be solved in a

standard manner using a Green's function4'15 approach. The Green's function

appropriate to the present problem satisfies the system

[ 02/az2 + Q(k,c;z) ] G(k,c;z',z) = 6(z-z'), (3.1a)

G(k,c;z',O) = G(k,c;z',d) = 0, (3.1b)

where

Q(k,c;z) M N2 (z)/c 2 - k2, (3.2)

and the horizontal phase speed c is defined by

22 2C c2 k. (3.3)

Solutions of the associated homogeneous boundary value problem

0 "(z) + Q(z) O(z) =0 0 (0) = (d) =0 (3.4)

can be used to construct the Green's function as will be shown shortly. For
2 1each fixed value of k ,Equation (3.4) represents a standard" Sturm-

Liouville boundary-value problem for c and so admits a denumerable
-2infinity of eigenvalues cn (k) and associated eigenfunctions On(k,z). The

eigenvalues form an ascending sequence for each fixed k

c I (k) <C 2 (k) < .. ;c 2 k.wnw)(3)

The eigenfunctiorns are orthogonal,

fd 2Z2 (3.6a)
f N2(Z) Om(Z) On(z) dz = p(k) 6,n (.

* ..

4



- and so the scaled eigenfunctions

* ,(k,z) a 0,(k,z) / fln(k) (3.6b)

*constitute an orthonormal set.

The Green's function defined by (3.1) can be written in the form

G(k,c;z',z) = ~0 (k,c;z<) Od(k,c;z>,) / A(k,c), (3.7)

where 00 and Od satisfy surface and bottom "initial-value" problems
specified b~y the homogeneous differential equation (3.4a) together with the

single-point boundary conditions

9S0(k,c;0) =0, 0(0c0 =1 (3. 8a)

Od(k,c;d) 0, Oý(k,c;d) =1, (3.8b)

andwhee mi~z~')and z max(z,z'). The Wrnkia
ardwhr < > i~~' osa

A(k,c) a 00(k,c;z) Oý(k,c;z) - '(k,c;z) Od(k,c;z) (3.9)

,...*. ~is independent of z, and so has the alternative expressions

A(k,c) 00(k,c;d) = ~~~;)(3.10)

on account of the boundary conditions (3.8).

2 -2IFor each k ,G is a meromorphic function of c with simple poles

.
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at zeros of the Wronskian A. Consequently, it admits a partial fraction

expansion'is

G(k,c;z',z) =G.(k;z',z)

___4__(k) (k,c;z) (k"" 1,
n=1 c (k) - c2  0A~kc - cc()

(3.11)

In this expression

G.(k;z',z) =sinh(kz<,) sinh~k(z,>-d)] k sinh(kd) 1(3.12)

is the solution of (3.1) when c-2 = 0 ( or in the unstratified case N = 0 )
The numerator terms within the brackets of (3.11) are proportional to the

elgenf unct ions

0S0(k,cn;z) o ~r(k~z) 0. (kcn;o) IOnk0 (3.13a)

Od(k~cn;z) On~(k,z) O(d~ 0 Iq(,) (3.13b)

The Wronskian derivative in the denominator of (3.11) can be 'expressed in

terms of an integral as follows17  Let "*~denote d if fereot iat ion wi th
4,~ 4respect to a parameter (not z) to be made definite later. Then from the

differential equation (3.4) and its parametric derivative, the following

results may be derived

(ýd Oo -o Q~Yd (3.14a)

.. Integration with respect to z of (3.14b) over O~zz' and of (3.14a) over

z<z~d, and subsequent addition of the results shows that

~' f ~ 0 dz + ý d(d)0(d)-0O(d)ý(d)

0 4~~ ()'d o0)ýO+dO ()
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The final four terms all vanish due to the boundary conditions (3.8),

resulting in the simple integral relationship

L(k,c) = fd ý(kc;z) z 0(kc;z) Od(k,c;z) dz. (3.15)

If the unspecified parameter is taken to be c-2, then it is found that

OA/c- 2  f0 N2 Oo d dz. Substitution into (3.11) and subsequent

application of (3.13) and (3.6) leads to the (modified) eigenfunction

expansion

G(k,c;z',z) G.(k;z',z) + GR(k,c;z',z) (3.16a)

where

GR(k,c;z',z) = 4 c•(k) n(k,z) n(k,z') / (k) - 2

n=1 (3.16b)

and where G, is given in closed form by (3.12). Application of a direct
eigenfunction expansion 4 8 solution of (3.1) leads to an expression

identical to (3.16), but with the leading term G, absent, and the numerator
4 22

factor cn replaced by c cn, i.e.

G (k,c;z',z) E c2 c2 (k) (kz) (kz) / ( 2

3 n~~~1 n~k ~k n n~k

Combination of this result with (3.16) leads to the identity

G.(k;z',z) E c () n(k,z) n(k,z') .
n= 1 (3.17)

The left-hand side is independent of the profile N by (3.12). This identity
2

could be sed to check the eigenfunctions c iputed for a general N profile.

The advantages ot (3.16) over the standard expansion are its more

rapid convergence, and extraction of the singular behaviour in z. The term

G. alone accounts for the 6:z-z') term in (3.11). Standard asymptotic
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results for fixed k and n-*= show that

C -2 Nn 22/*2(d) and (3.18a)

On(kz) N sin[ nxTr(z)/f(d)]/VN(z), (3.18b)

where
#z a = N(z') dz'. (3.18c)

&0

Thus c. =0(n- (1)0=O(l), O = 0(n), etc., and the convergence rate of

(3.16) is proportional to n-4 . Consequently up to two z or z' derivatives

may be taken 'under the summation sign' in (3.16) while retaining absolute

convergence of the resulting sum. The convergence rate of the standard
-2expansion is n . A single derivative reduces this rate to conditional, and

a second derivative reduces the convergence to purely oscillatory, as is

required to produce the 5-singularity of (3.1). This singular nature is

carried in the isolated term of (3.16), a fact reflected in the enhanced

convergence rate of the associated sum.

In terms of the Green's function, the desired solution to

Equation (2.5) is

(k,z,w) = P G(k,c;z,z') S'(k,z',w) / (iw) dz'. (3.19)

This is readily derived from Equations (3.1) and (2.5), and subsequent

integration by parts leads to the expression

(k,z,) = -f• 8G(k;z,z')/Oz' g(k,z,w)/ (iw) dz' (3.20)

-.3The differentiated sum in GR of (3.20) has an n convergence rate and can

be differentiated again, as required for evaluation of the pressure from

(2.6a). As may be seen from Equations (2.6), the remaining fields are very

simply evaluated from the pressure and displacement fields. In the



evaluation of the pressure, there arises the term

82G/Ozz'= kcosh(kz,,)cosh~k(z,.-d)]Isinh(kd) - dzz)

the delta function removes the isolated S term in (2.6a).

The solutions for the triple Fourier transforms of the various

fields can all be expressed in the common form:

?T(k,z,cj) - f4 S(k,z',w) Kf(k,w~;z~z') dz', (3.21)

where f denotes any one of the six fields. The various kernels are

K (k,ow;z,z') i/p0  (3.22a)

p ~Ml(k,c;z,z') xk
K~ (k,ow;z ,z') =x kx 2  ad(3.22b)

Ky (k,w~;z,z') ik wkA, (3.22c)

N(k,w;z,z') M I (kc;z,z') i~k). [c/k and r (k 3.22d)

K (kw;z,z') k /kn(.22e

v .

Auiir4ucinM sjs GO n .i h eua ato h

$2
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Similarly, M2 is given by

4 2 2
.12 n(kc;zz') = E rn(k;z2) cn (k) / [cn (k) - c + rý(k;zz')

where n=1 (3024a)

Sa ý (k,z) ý (k,z'), (3.24b)

and
r;(k;z,z') a k cosh(kz) cosh[k(z'-d)] I sinh(kd). (3.24c)

Equations (3.21) through (3.24) represent the general transform

space solutions for the various fields of interest. These equations could be

used for fully time-dependent computations involving arbitrary source

distributions undergoing arbitrary motions under the linear and Boussinesq

approximations, and are given for future reference purposes. Later, they

will be specialized somewhat for the purposes of this report.



4. UNIFORMLY TRANSLATING SOURCE; FREQUENCY INVERSION

At this point, the model is specialized to forcing by a

distribution of fluid volume sources over some finite planar region at depth

z., in uniform common translation at speed co parallel to the x-axis, moving

in the direction of increasing x and "switched on" at time t=O. Thus the

source function has the form

S(x,z,t) = 6(z-z3 ) S.(x-cot,y) H(t), (4.1)

where co>O. It should be noted that several such sources can be readily

accommodated by superposition of the individual solutions. In a refined

scheme, more general vertical source distributions could be incorporated by

retaining the integration over the Green's function, but this will not be

considered here. The triple transform of the special source (4.1) is

(k,z,w) =- i S0 (k) 6(z-zs) / (-o.c 0kx), Im{w-co0kx} < 0, (4.2a)

where
-VS(k) ( -1T So(x) exp(ik-x) d2 x (4.2b)

00

is a double spatial Fourier transform. The general expression (3.21)

immediately simplifies to

r(k,z,w) =-i So(k) Kf(k,w;z,z.) / (w-cokx). (4.3)

Recovery of the solutions in the physical domain then involves

inversion of the general expression (3.21) according to (2.4b). For the

uniformly translating source, it proves convenient to transform to

coordinates x, a x + cot x moving with the source. The physical-space

_0I
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solutions then have the general form

f(xlz,t) 1. So(k) Lf(kt;z,zs) e-ik x d2k, (4.4a)

where
1 M-it exp i(•-c 0 kx )t

Lf(kt;z fKf(k,;ZZs) f K cok. (4.4b)

The first step is evaluation of the frequency inversion integral (4.4b) for

the five kernels (3.22). With the special choice (4.2a) of source, it proves

possible to evaluate these integrals using residue theory. The source term

introduces a simple pole at w=cokx. The displacement (3.22a) contains an

additional pole at w=O. Moreover, all field transforms have poles where =
22k2 ca, as is evident from Equations (3.23a) and (3.3). At this point k is

real, and so k2 is merely a positive parameter as far as o• inversion is

concerned. Standard16 Sturm-Liouville theory then shows that the elgenvalues

c-2 are real and therefore that the frequency poles ±kc, are on the real w-

axis. There are no other poles in the v-plane. All eigenfunctions are
independent of w. Thus all poles are simple and appear explicitly as

denominator factors of the form (c±wp). The frequency inversion contour
passes below the real axis and so all fields vanish for t<O as may be seen

by closing the inversion contour in the lower half plane. For t>O, the

contour may be closed up, thereby picking up contributions from the poles on

the real axis. Evaluation by residue theory is simple if tedious, and leads

to the following results.

(a) Particle displacement:

L (k,t;z,z5) = i ro(k;z,zs) *(w(,t) -

2i E c (k) rn(k;z,zs) [t(),t)+)(n,t)]/2 -n=1
(4.5a)

r
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(b) Vertical velocity:

L w(k,t;z ,z) s - 10 (k;z,z S) +

Ekc 3(k)r kzz)f(O')fWt1/
n=1 n n s n n (4.5b)

(c) Pressure:

L P(k,t;z ,z) = IW PO (z)r;(k;z,zs)/k 2 -

0 l n1 nnn(4.5c)

* (d) Horizontal velocity:

L u(k,t;z ,z S) = i k r`ý(k;z,z) I k

i c 3(k) r',(k ~ , (z,)] 2

In these equations, note the auxiliary definitions

where

and

*(a,t) a 1-exp(-iat)J/a. (4.8)

/Also, (4.5d) is a vector form, and k is a unit vector. Equations (4.4) and

(4.5) give the solutions in physical space for all time for the particular

source (4.1), and can, in principal, be used to compute the time-evolution

of the linearized fluid-dynamical fields, i.e. including transient effects.

i *?
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5. EXTRACTION OF STEADY-STATE FIELDS

Of greater interest for present purposes is the ultimate steady-
state situation viewed in the (uniformly translating) source reference

frame. Specifically, the steady-state form f® for field f is defined by way

of

f=(x,y,z) r lim f(xl,y,z,t) = lim f(x+c0t,y,z,t) (5.1)
t-ýW t4=

It should be noted that for finite 0O, the various integrands of Equations
(4.5) are well-defined, for *(a,t) is an entire function of both arguments.
As t-+-, the increasingly oscillatory nature of the exponential part in each
term *[wp(k),t], at all k-points near which wp(k)0O, effectively removes
these contributions from the integral (e.g. Riemann-Lebesgue lemma), thereby
replacing each such term k by w•I(k) near such points. However, k-points

near real roots ko of Wp(k)=O present problems. These lead to poles in the
resulting steady-state integrands on the respective axes of integration. The
attendant ambiguities can be circumvented as follows e. Near such points the
ensemble of integration may be shifted into the respective complex planes, (
i.e. ko+6k, 6k complex ) for any finite t due to the analyticity of the
integrands. On the displaced contour near such a zero,

'k[Wp(k),t] [1-exp(-itA)]IA (5.2a)

where
A 6k.Vk Up(ko). (5.2b)

This deformation is then to be done in such a way that Im[A}<O everywhere on
the deformed portions; the corresponding exponential term of k decays in
time, and the resulting term AI7 is non-singular on the deformed contour in
the steady-state limit. If there are points k0 on the real axes at which
also Vk Cip 0, a higher approximation must be used; this possibility will
be considered further later.The relevant cp are given in (4.6), and have k-

gradients:
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Vk W. '(Colo) ;(5.3a)

Vk co~i C~ gn (k)/k, ±kY Cgn(k) /k)

= c -C~oCg~olCo kygn(ko) /k 0 o (5.3b)

The final expression on the right-hand side is evaluated at the appropriate

ko, and the horizontal group speed is defined a,;

Cgn(k) ado;,.(k)/dk. 15.3c)

It will be shown later that Icgnk~lcnkilcol for poles on the real kx-axis,

so that (c ~CnCgn)0?:0. The possibility of equality is ignored here for now,

/ ~and only the k -contour is deformed, leaving kc as a real parameter in the

complex ks-integrals. The deformation criterion (comment following (5.2b))

is then satisfied by deforming the ku-contour below each resulting steady

state pole on the real ku-axis.

~ The resulting expressions for the steady-state physical fields

can be written in the general form

f(x,z) = 2r f {~ So(k) Lf~) l~ dkx A k

Here the k ilntegral is confined to the real axis, and the kX-integral is

/ 41taken along a contour K initially consisting of the real ks-axis, indented
beluw any real poles. With dependence of the various Wand r on their

respective arguments (k) and (k;z,z.) suppressed in the notation, the

kernels have the expressions

(a) Particle displacement:
~00

Lw(k~z) ir/ 1w i E r k2 c (k) w W cC( )2
00 n=1 nn ( a

.55a
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(b) Vertical velocity:
2 4 2_ 2.

Lw(k,z) = - + k E rn k2 c (k) w ( 2 2
n=1 C(5.5b)

(c) Pressure:

La(k,z) = iPo p/k 2- Je 0 E n cp4 (k) 2 ( 2
o0c 0 n=n (5.5c)

(d) Horizontal velocity:

Lu(k,z) = i rk / ik- E rn k c (k) I ( 0 2 2
0 cnn0)n

ln= (5.5d)

Note that in the infinite sums for w, p and Uh, the respective convergence

rates in n, for each fixed k in the integrands, are O(n- 3 ) O(n 2 ) O(n-)

The w term in the infinite sum for the displacement field, which may be

isolated by a partial fraction expansion of the denominator, is independent

( of n, and by (3.17) this isolated term could be evaluated explicitly to

cancel the ro term outside the sum. However the remaining infinite sum would

have only O(n-) convergence, in contrast to the O(n 3 ) behaviour of (5.5a).

Finally, note from (5.5c) and (5.5d) that L c0 po(z) LO; these

expressions are essentially partial fraction expansions of the respective
±

fields, and the numerators have the same values at the poles wo, 'n" Thus

the steady-state pressure is proportional to the x-velocity component at any

depth. This may also be seen from the dynamical equations upon
transformation to coordinates translating with the source and looking for
solutions independent of time. The pressure field will therefore be excluded

from further consideration.

$i:;

•-V
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6. EVALUATION OF ku-INTEGRALS

(a) Preliminaries

As in the case of the frequency integrals earlier, the kX-

integrals (5.4) arising in computation of the steady state fields are
amenable to evaluation by residue theory.

There are poles due to zeros of the sinh(kd) (k•O) terms in the
denominators of Io and r,. There are also poles at kx=O in the
displacement, and a pole at k=O ( and therefore at kX = ±ilkyl )in the

horizontal velocity fields. These poles give rise to near-field disturbances
and are independent of the N2-profile details. Finally, there are poles

2 2where n = W0' which depend on the details of the profile and represent the
radiating internal wave wake.

The coefficient Q ;f • in the differential equation (2.5a) is
2ZC2 22EN k(z)/c2-k]. This coefficient must be positive somewhere on (O,d) in order

/ • that the solution not be of a purely exponential nature. Thus it is evident
that for k2400, c 4O+. It has already been seen (in the discussion for G )
that if ICnI4=, then k2- (niT/d) 2 Moreover, when k2 <O, the d.e. is always

2 2.oscillatory for c >0, and also for certain values of c <0. This leads to the
2>0 C2 2 2basic rules that (k2>0) >(c0>), and conversely (c <0) (k <0). The basic

2 2 2 2behaviour of the eigenvalue curves c cn(k) in the (c ,k ) plane is
I sketched in Figure 1 (lighter curves with negative slope ). These curves

were computed for a constant-N ocean, and are included purely for
A illustrative purposes.

The poles w = o 2can be located as follows. These must satisfy
•• tedacosrit 2 2 2 2 •2

the dual constraints c cokx/k (which is a restatement of the equation W
N. 2 c2  2S) and c (i.e. they must be eigenvalues). For a fixed ky, the

first constraint is equivalent to a hyperbola

2 2 2 2 2(c c )k (6.1)

in the (c ) plane. A sample of such a hyperbola is also sketched as the
darker curve (positive slope) in Figure 1. The intersections of the

'_4
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Figure 1. Sample dependence of five eigencurves c2 on k2 is shown by the
n

lighter curves. The darker curve depicts a constraint hyperbola of the form
2 2 2 22(c _c )k= ck2

hyperbola with the eigenvalue curves give two discrete families of poles
2 2satisfying the constraint, one with k >0 and the other with k <0. Both
22 2 22families have a horizontal asymptote c =co. Poles with k >0 have 0<c <C,

whereas those with k2 <0 have c >C2 In both cases c2 >0, so that k2 >02

whereas >0,s with . t2o poles c>o.n both casas c20,s ta k
corresponds to a•O ~.t oe ntera x-ais. Similarly, the poles

with k <0 correspond to poles on the imaginary kx-axis.

In order to evaluate the kX-integral via contour integration it

is necessary to compute the residue at each pole 1/w. If these poles are

simple, the residue calculation involves the reciprocal of the derivative
±do•,/dkX, evaluated at the pole. Since the modal frequencies depend on k only
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via k2 , it is found that

+ 2 2d/dkx = co±(kx/,)d•d. (6.2a)

Evaluation at cn=0 gives

÷. 2_ 2 2
(dco/dkx) 0 = [c-(dw ndk )o]ICo, (6.2b)

the subscript "o" denoting evaluation at the pole. Note that the term

dc/dk2 can also be written as CnCgn as in (5.3). An integral expression for

this term can be obtained as follows. From (3.15) and (3.13) it follows

immediately that

fo Q(k,c;z) O'(k,z) dz = 0, (6.3)

since A(k,c) = 0 along any eigencurve. Note that the derivative in (6.3) is
total, since there is just one free parameter describing an eigencurve. Let

the parameter be k2, thLn

A f o 2- 2 24W 2 2j 2Io EN2/W 1 (k N In)do /dk n dz = 0.

This is readily rearranged, with the help of normalization definition

(3.6a), to

2 2d -2

dwn/dk = cn El - On dz]. (6.4)

The left-hand side of (6.2) may therefore be expressed as

(dc.±/dkx)e (cok )[k kc n [o On dz]. (6.5)

The term in squire brackets is strictly positive for both real and imaginary

poles, except if ky =0, and kx=0 is also a pole. Evidently, for k •0, the

poles in kX are all simple. Moreover, even if ky:O, the poles are still

simple so long as the corresponding value of kXo is non-zero, or if the
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limiting value of the ratio ky/k. is non-zero. With reference to Figure 1,
note that as ky4O, the hyperbolic curves degenerate to the lines k2=O,

222, 2. Clearly a double pole is possible -:jat most one point, and then only
if cm(O) = co for some eigencurve. This situation could be resolved by

deforming the ky-contour near kY=O also, but this will not be considered

further here. Related problems are removed by any realistic source term (see

(6.11) below). Note that for poles with k2>0, the right-hand side of (6.4)

is then positive, as mentioned in conjunction with (5.3c).

From the definition of the phase speed, Eq.(6.4) can be expressed

alternatively as

dc'/dk2 = -cn fd -2 dz. (6.6)

22

This shows that each curve c2 is a strictly decreasing function of k , a

standard7 result, and is illustrated by the sample curves of Figure 1.

2 22 22
For the real roots (kx>O), the constraint c0k = k cn maybe

thwritten in polar form by defining kx = k cosO, ky = k sinS. The n
eigencurve is then specified in the form (k,9n(k)). The constraint reduces

to

cos 2 [9(k)] 0 (6.7)

The right-hand side is a well-defined function of k, and as k-+-, it

approaches 0, and so 9nO-±riI/2; the curves have a vertical asymptote. If it
2 2happens that c•(O) co, then the curve passes through the origin in the

(kxtky)-plane, at angle on(O). Such curves are termed super-Froude and are

infinite in number. They contain only diverging waves. Alternatively, if
c (O)>co, then there is some finite value of k at which (n(O)0O. The slopes

of the curves are given by

dk/dO = -c sin(9)/cn. (6.8)
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This second type of curve is termed sub-Froude and each such curve cuts the

kx-axis with vertical slope as is evident from (6.8) - they give rise to
modes containing transverse waves. There are at most a finite number of
modes of this type. If the source speed co is sufficiently high that co i

cl(O), then all modes are super-Froude.

Similarly the constraint for the imaginary modes may be rewritten
as follows. Define kX = ikcoshA, ky = ksinhju where k_>-O. Then

cosh2• = cn(k)/co. (6.9)

It is readily seen that for any super-Froude mode, the corresponding A (and
consequently kx) is bounded away from zero. The associated wake contribution
thus decays exponentially away from the source with a factor exp(-Ixkx(O)I).

Conversely, any sub-Froude mode has ji-values down to zero and the associated

contribution from the kx-integrals might be expected to decay only
algebraically with distance from the source.

.......

~. ..
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(b) Source notes

The source (4.1) is represented by a horizontally bounded
distribution S. of sources on the plane z=z,. Let these sources lie between
Xmin and xmax* Then in general, the Fourier transform So will possess

exponential growth for IIm(kx)I-w. Closure of the various kx-contours will

thus be possible only for x > xm., and x < xmin. Thus the result of this
contour deformation will describe the far-field propagating internal wave-
field, and the near-field both ahead of and behind the extremes of the

source distribution. Computations for xmin < x < xMa would require
alternative computational methods, and will not be considered further here.

Since the source distribution So is real, its transform (4.2b)

satisfies the property

S= (6.10)
the asterisk denoting complex conjugation.

A realistic source model must conserve mass. This requires that
the integral of V-u taken over a volume completely enclosing the source
distribution S must vanish. For the source (4.1), this requirement reduces

to ffOx So(x) d2x = 0, which is equivalent to

S(O) = 0. (6.11)

This constraint will be assumed in what follows. It alleviates potential

singular behaviour near k=O.

(c) Evaluation of the integrals

It has been seen above that the nth term of each infinite sum in

Equations (5.5) contains two real and two imaginary poles in kX. Denote

these as

±An(ky), ±iVn(ky), (6.12)
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where #n, vn • 0 by definition. As noted earlier, there are additional pole•

at zeros of sinh(kd) (k;O). These lie at k = -n 2Tr 2/d2 2,7, and so in the

kx-plane at

= =-62(ky) - ( k+ 72 ), (6.13)

where by definition, 6n 0 0. Thus there are poles at kX = ±ian(ky). The plus

(minus) sign thus refers to poles in the upper (lower) half kx-plane.

Finally there is a pole at kx=O in the displacement integral, and poles at

kX tiIky in the horizontal velocity integrals.

The details of the residue calculation then form a standard but

tedious exercise in algebra. The final results, which represent the working

equations for a computational scheme, are presented below. With reference to

Equation (5.4), it is evident that all fields can be expressed in the form

of a single inverse Fourier transform in k .

f,(x,z) = f f(x,kyz) exp(-iyky) dky, (6.14a)

where

f(x,ky,z) * (2n)I Ki So(kx,ky) L"(kx,ky,z) e-ixkA dkx. (6.14b)

The results of evaluation of the kx-integral (6.14b) by residue theory

(closing up if x<xmin and down if x>xmax as necessitated by an above note)

may be summarized as

f(x,kyZ) Hfn(kyzzs) a' So(-in6ky) exp(-x 6 n)
n=O

n• Ifn(kyZ,Z) a' So(-iv ,ky) exp(-xvn)
n 1 f yXs f 6.n5y n

(x >xma (6.15a)

ma
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f(x~k Z) =Df(k y ziz ) S0(O~k y) +

n= H (k 3ZZ) a- S (+i6 ,k ) exp(+x6 d

E1 I If(k 3ZZ a- S (+iv~ Ak) exp(+xv) +

R fn (k y Zzsz)( b fS 0(+An ,k y) exp(-ixA n )+

b f S 0 (-'rA ,k ) exp(+ixA n ) +

E fn (k ZZ ) S0 (0~k ) }.

( X(<Xmin ) (6.15b)

In these equations the a's and b's are constants defined by

au ±1, a. = +i, aw = +1, 11n 61a

...... u,+1, by = ±1 =+i, bV +1. (6.16b)

The coefficients H ( bperbolic, for want of a better identifying term)

Sarise from the poles in the slnh(kd) term, and are defined by

Hun kyi is) (6.17a)

Hn (k ,z~z J //6.7b
ny s) ky/n (6.17nb)o(7zs

and

1ny (6.17c)

H,.Y 7Sin(-/ Z)cos(/1 z)/ (6 d).

In these expressions,

v (1/2,1) (n=0,n>O). (.1e
(6.7e



-31-

The coefficients I arising from the poles on the imaginary kx-axis, and R

arising from poles on the real axis, due to the terms ai- of (5.5), share the

common functional form

G un (k y 'z'Z ) 1 C 4 (k;z,zs) (6.18a)

G ( 'z'z k /lk I 2( 2 _0 dw2 ldk 2) (6.18b)

and

G w (ky ,z~z S) aIkIc n 1 Cc2 r (k~z~z) (6. 18c)

Cii~ ~ 2zz5  
2 d k2)

G ýn(k y 'z 1 2(c 0  dcn/d (6.18d)

These are to be evaluated with

kX= +ivn(ky), k = +i(V 2_L.)1/ 2  (G =I) (6.19a)

and

-X=+ Jhn(ky), k=+(A 2 Ak2) 1/ (G = R ).(6.19b)

Note the suppressed dependence of cn etc. on k in the notation. The

remaining terms Efn and Df are zero for all but the displacement field,

=u Ev =Ewn 0 (6.20a)

IDU =DV =DW 0 (6.21a)

E (k ,zz n1 I~z'z) c (Ik 1) c/62b

(ki 'zIZ) E (1k c'Zz (6.21b)

The coefficients (6.16) through (6.17) have all been constructed so as to be

real. The above Equations (6.14) through (6.21) represent the main working

~ results for numerical computation of the fields. The next section will
consider the details of numerical evaluation of the various terms in these

equations.
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The above results hold for an arbitrary source distribution SO(x)
subject to condition (6.11). If the source has symmetry properties, the
above results simplify considerably. In particular, let it be assumed that
the source distribution is symmetric in y and antisymmetric in x, i.e.

SO(-xy) = -So(x,y), So(x,-y) = So(x,y).

This property transfers to the Fourier transform So(kx,ky), i.e. it also is

antisymmetric with respect to its first argument and symmetric with respect
to its second. It then follows that if a and k are both real, then so are
both-of So(ia,ky) and -iSO(a,ky). Under this simplifying assumption, the
above solutions may be put in the common form

fo x = Afn(x) nfn Hfn Chn exp(-Ixa n) + E Ifn Ci exp(-Ixvn1)
no n 1

+ H(-x) E 2 R C Af (x).
n=1 (6.22)

In this expression, explicit dependence on ky, z, Z,, etc., has been
suppressed in an obvious manner. The expression is valid if x>xmox or if
X<Xmin. The first pair of terms are present both ahead of and behind the
source, and represent a localized or near-field disturbance. The leading A

functions are defined by

Afo (x) f-1, -sgn(x), -1, -isgn(x) 1, f={c,w,u,v}. (6.23)

The third term is present only downstream of the source and represents the
internal wave wake generated by the source. Functions A1n are defined by

Afn(x) • { sin, cos, -sin, icos}[xA,(ky)], f=[ý,w,u,v}. (6.24)

4..

........
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The terms C are related to the source function by

Chn l So[i6n(ky),ky)3  Cin a oink)kl and

C rn a ig[nk)k] (6.25)

and are real on account of the above note. Thus the above expression(6.22)

is real and even in kyfor the field components u,w,.ý, and is imaginary and

odd in ky for field v.
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7. NUMERICAL CONSIDERATIONS

(a) Preliminaries

Computation of a physical field component is based on Equations

(6.14) through (6.21). The integration over ky is implemented efficiently

using well-known Fast Fourier Transform (FFT) methods. This is a major

reason for evaluation of the kX-integrals by complex variable methods,

leaving ky as a real parameter, and it essentially allows simultaneous
computation of many cross-track points at each fixed x and z.

The heart of the problem is therefore the computation of the

eigenvalues, eigenfunctions and various coefficients in order to do the

modal summations of (6.15b) at any fixed set of values {x,ky,z,z,,co} with a

given N2 profile.

(b) Differential Equation Solution; General

The next step i. computation of values of the Wronskian A in

! I order to find zeros. This entails solution of the homogeneous differential

equation (3.4a), together with boundary conditions (3.8), for a given
-.N. profile. With dependence on the parameters suppressed for now, the

differential equation can be written as a first-order linear system,

• :,-;?•?•;VI (.z) = A(z) O(z), (7.1la)

where

-Q(z) 0

( Note the convention that uppercase bold Greek symbols denote 2x4 column
vectors, and uppercase bold underlined Roman symbols denote 2x2 matrices.)

The solution to (7.1a) can always be expressed in the form

(z) F(zz) (Z) (7.2)
-, -' •• .
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Here, F is a fundamental matrix' 6 ("propagator") relative to zo, which

satisfies initial conditions F(zo,z,)=12 (the 2x2 identity matrix ) and

whose columns each satisfy (7.1a). Note the basic results

E(ZZo) = F-1 (zo,z), (7.3a)

F(z,z,) = F(z,zo) F(zo0 ,z). (7.3b)

The determinant of F is independent of z since A has zero trace, and the

initial conditions show that

det(F) = 1. (7.3c)

It follows from Equations (3.8),(3.10), (7.1) and (7.2) that the Wronskian A

has the expression

A= F12 (z,O)f2(z,d) - f22(z,O) 12 (z,d), (7.4a)

where the subscripts refer to matrix componunts. The left-hand side is

independent of z, and so the right-hand side can be evaluated at any
convenient reference depth 05z5d.

If it should prove necessary to evaluate derivatives of the

Wronskian with respect to some parameter, two approaches are possible. If

the derivatives of F are available analytically, then (7.4a) may be

differentiated directly

A!" = 1 2 (z,") F22 (z,d) * F2 2 (z,0) t 12 (z,d)

2- 22 (z,0) F1 2 (z,d) - F22 (z,0) t 12 (z,d). (/.'4b)

The other approach is to differentiate (3.10) directly, and obtain the
i.4
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eigenfunction derivatives by solution of the augmented matrix differential

system

0 1 0 0
Q0 0 0

0 1 0 0

4~ 0 -Q 0 (7,5)

subject to the appropriate boundary conditions derived from (3.8).

i�~(c) Layered Profile

I Numerical values for the profile N2 will generally be obtained
from measured data and defined on a discrete mesh of points. Many methods

can be employed for solution of the differential equation.

One possible approach is a three-point finite difference
scheme 18 19 20 . This method leads tu a tridiagonal matrix eigenvalue problem,
which has the advantage of approximating the eigenvalues of the differential
equation as those of an n th-order matrix. Although the matrix elements are
extremely simple, an excessively fine mesh may be needed to adequately

resolve portions of the eigenfunctions with large vertical wavenumbers.

Another possible approach is to use piecewise approximations to

the profile which allow the differential equation to be solved analytically.

For example, piecewise linear approximations lead2 1 to Airy function
solutions which may be used to construct the fundamental matrices F in the
various segments. While such methods provide accurate solutions on a
realistic approximation to the physical profile there may be the added
burden of computation of the various higher transcendental functions which

arise.

The approach to be used here is to use the simplest possible
approximation to the profile, namely "layers" within which N2 is piecewise

-cle utlyr17.22 23
constant. This so-called multilayer or Thomson-Haskell approach leads
to eigenfunctions which are piecewise trigonometric or hyperbolic elementary
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functions. This approach is suitable24 for the present problem since the

basic profile data is N2 and this does not appear in differentiated form in

the differential equation. With proper treatment, these solutions can be

suitably stabilized as explained below. Note that this approximation may be

more properly thought of as suitably joined local WKB approximations to the

-- eigenfunctions for the true profile, rather than a stepped approximation to

the true profile. The phase of the local trigonometric solutions allows more

efficient eigenfunction approximation in regions of large vertical

wavenumber than finite difference methods.

Thus for a given profile, a set of points [zo=O<z 1<.. .<zn=d} is
thintroduced, giving n layers, of which the m has constant value Nm and

thickness hm.zm-z&_,. An example of a such profile is shown in Figure 2. It
12is based on measured summertime temperature/salinity data taken at Ocean

Station P. From this data, N2values were computed, and 31 layers fitted to

a smoothed version. The plot displays N(z) in units of cycles per hour as a

function of depth in metres. The profile shows a pronounced pair of maxima.

Only the top 1250m of data is plotted; the actual profile extends to a depth

d=4133m, with N=O below the plotted values.

The solution form (7.2) for any points z and zo within the same

layer may then be written as

%(z) = I[Q•/ 2 ;z-zo] O(zo), (7.6)

where the fundamental or propagator matrix T 15 defined by

cos(ah) sin(ah)/a
• T(a~h)- s

- . [ -a sin(ah) cos(ah) . (7.7)

If this propagator is for a whole layer, it is denoted _, i.e.
S~T.m•!%h) (7.8)

Note that a may be imaginary.

S
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Brunt-Vaisala f requency (cqvnr) 1

250

500

750

1000

1250Depth =4133m

I Stability Profile
Figure 2. The layered Brunt-Vaisala frequency profile used for the examples
in this report. It is based on a smoothed version of measured data taken at
Ocean Station P during the summertime.

.Ir
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In this multilayer Boussinesq approximation, appropriate

* conditions on the solution are continuity of 0 and 0' for O<z<d (this is

because the differential equation contains no derivatives of N2 ). Thus by

application of the general form (7.3b) or simple iteration of (7.6), it is

* readily seen that if zr is within layer 'W', then

to(Zr) = _T[a;zr-zm]_a-_'i-.'._Tio(O), (7.9a)

and
1d(Zr) = -T[;zr.Z. i""n #d(d). (7.9a)

The left-hand sides contain the information necessary for evaluation of the

, Wronskian A at an intermediate depth zr. In principal, this reference depth

may be chosen at either boundary, and so the Wronskian can be expressed as

A P121 (7.10a)

where the matrix P represents the fundamental matrix relative to z=O,
Sevaluated at z,,d, i.e.

I P - ! T . . ., , _1 ( 7 . 1 0 b )

This is in fact the first equality of (3.10a) in the present notation.

(d) Auxiliary Variables

• 7. For numerical purposes it proves convenlent to work in terms of

new parameters (p,s) in place of (k 2,c 2). These are defined by

2 l 2  2 2

A convenient combination is the special value

S2 2
0• so MQX/co, (7.12)

V;

...... .
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which is related to the Froude number', but has the dimensions of reciprocal

length squared. The equations inverse to (7.11) express (k,c) in terms of
(p,s), k sp, c= NMOX/s (7.13)

The coefficient Q of the differential equation (3.4) then becomes

Q(p,s;z) = s[v(z)-p], (7.14)

where v is a dimensionless profile

v(z) N2(z)/NaX3, ( 0 1 (7.15)

The physical eigenvalues of the modified form of (3.4) then define a set of

monotonically increasing curves sm(p) in the (p,s) plane, confined to

-- <p<l, s90.

Portions of the first 21 oigencurves sn(p) in Quadrant I of the

(p,s)-plane are shown in Figure 3. These correspond to the profile shown in

Figure 2, and are displayed in a log-log (base 10) format in order to
.separate the various curves better. Note that numbers on the axes give the

actual values of p ai,J s, not their logarithms.

The main interest is in those points which lie on these

eigencurves and also satisfy either of the constraints c2  k in the
0 X

2
case of coefficients (6.19), or k 0 in the case of (6.20b). In terms of

the new parameters, the fir•L constraint translates to

2

(s-s 0 )p 2 (7.16a)

and the second to

2
sp= k. (7.16b)
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3<

10

S

"-/

104 t- 104 V- 10- t0I

~ 
P

Ui' Figure 3. Portions of the first 21 eigencurves in Quadrant I of the (p,s)

parameter plane for the profile of Figure 2. Although the various curves

approach each other with exponentially small separation at a discrete number

of points, they do not intersect each other. The illusion of two sets of

curves is due to the presence of the two peaks in the profile, as discussed
in the text. Also shown are three constraint curves along which eigenvalues

are sought for a fixed value of ky and source speed.

.... Y
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Both represent hyperbolae in the (p,s)-plane, and have the s-axis as a

vertical asymptote. The second constraint hyperbola intersects the

eigenvalue curves only in the first quadrant p,s4O, providing a denumerable

infinity of intersections {p.,s.1 corresponding to real eigenvalues. The

first constraint has a horizontal asymptote in s>O, and so provides a first

denumerable set of solutions {p_,s;} in the second quadrant sMO,pgO
corresponding to the imaginary eigenvalues of (6.19a), and a second set

{p,,s•} in the first quadrant s_>-O,p_>-O corresponding to the real eigenvalues
of (6.19b). The effect of a increase in source speed c. is to shift the
horizontal asymptote in (7.16a) downwards, while the effect of an increase

in ky is to increase the distance of the hyperbolae from the origin. The
eigencurves themselves are a property purely of the N2-profile. The
imposition of the c. and ky values merely dictates how these curves are
"sampled" in the integrations leading to the physical fields.

For each fixed ky (to be dictated by. the integration scheme
chosen for the ultimate integration of (6.14a)), the finding of eigenvalues
is thus conveniently reduced to a one-dimensional problem of searching along

the hyperbolae (7.16), which can be expressed in terms of a single suitable
variable. Hyperbola (7.16a), for example, may be described by a parameter

'v' by way of the definitions

p(v) a o(v)-v/2; s(v) s +a(v)+v/2 (Quadrant I), (7.17a)

p(v) -a(v)-v/2; s(v) = s -o(v)+v/Z (Quadrant II), (7.17b)
..... where

2 2 /

o(v) k k2 v2/4 )11, and -- <v<w; (7.18)

the signs in (7.17) have been chosen so as to make s'(v)>O, p'(v)<O on both

arms of the hyperbola. Hyperbola (7.16b) may be parametrized by equations

analogous to (7.17) with sc replaced by 0.

7: Sample hyperbolae of the form (7.17) for several k -values are

a also shown on Figure 3. In the log-log form used, these hyperbolae become
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almost linear; log(p) + log(s-sc) = 2log(ky). The speed used for these

constraint illustrations was c,=O.5 ms- , and the ky-values correspond to

fj(nI3O72) rad nf1 ; j= 25, 271, 513 1. The intersections of any one of these

hyperbolae with the eigencurves give the corresponding set of modal points

{p+,s+} described above, for the value of ky under consideration.

Thus once c0 and k are fixed, the constrained eigenvalue problem

has only the single parameter v, and involves finding zeros of the (real)

function

D(v) m A[p(v),s(v)] ( -<v< ), (7.19)

where A is the Wronskian (3.9), expressed in terms of the new parameters.

Figure 4 shows plots of D(v) along the three constraint hyperbolae plotted

of Figure 3. Note that the v-ranges on each plot are different; the

31 "Iparametrization (7.17) varies with ky.

(e) Effects of Interior Evanescent Regions

A In practice, the presence of evanescent layers ( imaginary

vertical wavenumbers Qm<O ), for certain values of the parameters (p,s), is

a well-known source of difficulty11* 2 5. 2 6 As may be seen from (7.14), the
t hdifferential equation coefficient for the m layer is Qm=s(vm-p). As noted

above, the imaginary eigenvalues have -w<p:O, s>O and so all layers are

oscillatory. However the real eigenvalues have s>O and 04p<1. Thus for a

given value of p, all layers with v,<p will be evanescent. If not properly

handled, these regions may cause numerical exponential overflows and

i inappropriate approximations for eigenfunctions. Moreover, such regions may
A cause eigenvalues to be exponentially close together and so cause multiple

eigenvalues in a numerical implementation. Such multiplicities and overflows

must be handled carefully, but this can be done in a straightforward manner

as will be explained later. Before a general discussion however, it is

instructive to consider a symmetric three-layer profile.

i

f.4
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D(v) 0
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-to 0.0 to 2.0 3.0
V

Figure 4. Plots of the scaled Wronskian D(v) along the three cuts depicted

on Figure 3. The three values of k chosen increase down the page. Note that
y

the close separation of the fourth and fifth zeros in the central plot

causes their apparent coalescence into a double zero.
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(f) A Symmetric Three-layer Exzample

The symmetric three-layer profile is shown in Figure 5.

z=-a-b -V(z)

z=-b

z= 0 --

zz b

z= a+b

z
Figure 5. Symmetric three-layer profile. Note that the origin has

been shifted for purposes of this discussion.

It is convenient for purposes of discussion to consider the surface to be at

z=-a-b and the bottom at z=a+b. Thus the centre layer has thickness '2b',
2and the differential equation coefficient there is fi s(v-p). The two

flanking layers each have thickness 'a' and coefficient a2 * s(1-p). Within

the centre region the general solution necessarily has the form

O = A cos(gz) B sin(pz)/.

It may then be shuwn that

O(±a±b) = LA ± MB,

where

L cos(#b)cos(aa) - (f/a)sin(fb)sin(aa),

M sin(fb)cos(aa)/# + cos(#b)sin(aa)/a.
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The boundary conditions 0(±a±b) =0 then result in the homogeneous equations:

LA+MB=0, LA-MB=0,

so that either

L=O, B=0 (even eigenfunctions),

or

M=0, A=0 ( odd elgenfunctions).

In terms of the standard notation, it may be shown that for this problem

A 2LM9

i .e. the Wronsk ian f actors i nto a product of two terms. The e igenvalIue~
conditions are thus

cxcot(aa) = ltan(flb) (even),

or
cxcot(cxa) =--cot(pb) (odd).

--j If the elgenfunctions are normalized to unit slope at the upper (z=-a-b)
boundary, so that they correspond to the "upper" solutions 00 of the
standard notation, they may be written in the form:

sin[cx(r,+b+z)] sinrcx(a+b+z)] -- azb

= sin(aa) cosOz) 00= sin(ca) sin(Oz
coOE x si -b~z<b,

sin[a(a+b-z)] sin~a(a+b-z)J ] ~ ab

where the subscripts here denote Even or Odd eigenfunctions respectively.
If <p~l, then the centre layer is evanescent, and flil IflI . The outer layers
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ure oscillatory, and the Wronskian A may be written as:

A = [sinh(21Ifb)sin(aa)/(a[lI)] x
S[acot(aa)+J#Jcoth(1fl[b] [acot(aa)+fl#Itanh(1l#[b].

The above eigenvalue conditions reduce to

acot(aa) =-t1Itanh(1Ifb) (even),

or

acot(aa) =-1#Icoth(i#Ib) (odd).

If the product IfIb is large, two points may be noted. Firstly, the leading

sinh(21fl~b) causes the Wronskian A to become exponentially large except near

its zeros. Secondly, both the tanh(Ifltb) and coth (t#Ib) right hand sides

approach the common value 1, and so the eigenvalues merge into pairs with
"".0 exponentially small separation. These factors exhibit both the exponential

overflow and multiple zero problems mentioned in the preceding section. As

will be shown below, the exponential amplitude factor is easily handled, but

the presence (in a numerical sense) of multiple zeros may cause problems.

0 Consider now the elgenfunctions in the presence of this

evanescent layer. In this centre layer the even eigenfunctions have the form

z(z) = =-asin(aa)cosh(ilPz)/cosh(1#lb),

while the odd eigenfunctions have the form

iý 1A0o(z= ) -a'sin(aa)sinh(ilPz)/sinh(I#lb).

For large IfIb products, the eigenfunctions in the outer layers

corresponding to two closely-separated modes may be numerically

indistinguishable, apart fromia possible change in sign in one of the

oscillatory layers. This may be seen from the above general expressions for
the elgenfunctions, where an even and adjacent odd eigenfunction may have



-48-

values of a which are exponentially close together. In the evanescent layer,

the eigenfunctions are essentially zero over most of the layer. The

additional interior zero of the sinh term ensures that in principal it

represents the next higher mode, but in practice it may be impossible to

distinguish numerically between the exponentially small values of the cosh

term and the utrue" zero in the sinh term.

The exponential smallness in the interior evanescent layer at

first glance appears to represent "tunnelling" of a finite amplitude

eigenfunction through a region of extreme smallness, only to reappear with

finite amplitude in the other layer. The resolution27 lies in consideration

of the eigenfunction expansion, including the source term. Suppose that the

source is in one of the outer oscillatory layers (cf sound channels in

acoustics ). By grouping the modal summation in pairs over adjacent modes in

those terms where the eigenvalues coalesce, it can be seen that the source

excites these two modes equally in its own layer, but the sign change of the

eigenfunctions in the opposite layer removes any contribution there. Thus

for numerical purposes, a modified set of eigenfunctions may be defined by

doubling the amplitude in one half of the profile and zeroing it in the

other. Thus when an eigenvalue pair is numerically indistinguishable, it is

counted twice, and used to form two numerically orthogonal eigenfunctions

which are disjoint and normalized over half the profile (which effectively

doubles their amplitude in each layer in keeping with the pairwise
regrouping in the eigenfunction expansion). It is then the source which

dictates which of the disjoint (modified) eigenfunctions is excited. The end

result is that energy excited in a given "waveguide" subsection of the

overall profile remains confined to that region.

(g) Treatment of Interior Evanescent Renions

Now return to consideration of the more general problem in which

there may be multiple interior evanescent regions. The exponential growth

problem can be easily circumvented simply by factoring out an exponential

term from the matrix for each evanescent layer in the proauct (7.10).
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Specifically, (7.10) may be recast in the form

= exp[ f4 ImlQ(z') dz' ),(7.20a)
where

and
ImexpE-Im(hM'VQM)1. (7.20c)

If the layer is oscillatory (Q>O) , then the matrix R is identical to T as

defined in (7.7). However, if the layer is evanescent, then R has the form

R-f 1+exp(-2ah)]/2 [1-exp(-2ah)]/(2a)

~ Ia[1-exp(-2ah)J12 E1+exp(-2cahflI2 j,(7.21)

where here a=abs(Im'VQ). The elements of each matrix R are bounded, and for
Aan evanescent layer they are also positive. Moreover, if several adjacent

interior layers are evanescent, then the product of the corresponding R's is

also bounded and has positive elements. There is then no numerical

difficulty (or "instability") in evaluation of the matrix product (7.20b).

25.28The above approach is similar to ones used elsewhere/ Specifically, (discontinuous) amplitude control functions Xo,d for solutions

of the differential equation are defined by way of

X0(z) expC f7 mQz)d') (7.22a)

Xd(Z) expE f', ImV'Q(z')d'] (7.22b)

the integrands here are by convention either zero or positive. Scaled

"elgenf unct ions" 10,d are then delfined by

#0(z) *X 0 ~i(Z)t~ OdW Z' Xd(Z)VdZ). (7.23a,b)

S The functions X limit any exponential growth in the scaled elgenfunctions
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away from their respective boundary and the modified functions f are

bounded.

On account of (7.20a), a zero of g is one of P, and hence an

eigenvalue. The eigenvalue search is then reduced to finding zeros of the

(1,2) element of the bounded matrix Q. It should be noted that extensive

numerical experimentation verifies that there is no need to evaluate the

Wronskian at an interior reference depth25 for the purposes of root-finding.

However, as will be discussed later, more care is needed with construction

of the eigenfunctions, where the evanescent layers may introduce artificial

amplification of the eigenfunctions in inappropriate regions of the profile.

It may be noted that for an evanescent layer, det(R) = exp(-2ah).

Thus for evanescent layers with large a-h products, or for a set of adjacent

layers whose integrated a-h product is large, the determinant of the

corresponding matrix can vanish (underflow) numerically. This feature in

effect factors the eigenvalue problem into two subproblems in which an

artificial rigid boundary (or appropriate radiation condition) is introduced

into the evanescent region. This is the generalization of the exact

factorizatiun which arises in the symmetric three-layer model above.

Specifically, suppose that the profile contains an interior region of high

evanescence. Then the factors of (7.20b) may be regrouped as

LEU, (7.24a)

where L denotes the product of matrices for all layers from below the

4 evanescent region to the bottom, E represents all layers within the

evanescent region under consideration, and U represents all layers above the

evanescent region. (Note that Lg may themselves contain evanescent regions,

in which case the present argument is iterated). Numerically, det(E)-O, so

SE1922-912-E21. Substitution of this relationship into (7.24a) leads to the
result

912 (LE) 12(EU) 12/E12" (7.24b)
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The denominator is strictly positive. The two numerator factors in effect

represent separated eigenvalue problems. In the first sub-problem, the
"upper" profile (represented by U ) overlies the evanescent region (E), and

in the second, the evanescent region overlies the "lower" structure

represented by 1. The separated problems thus correspond to the total

propagator matrices LE and EU. Each factor will contain its own zeros,

leading to the possibility of multiple zeros in the left hand side of

(7.24b), depending on the details of the profile. In general these will

occur only at discrete points, where families of eigencurves corresponding

to each subsection approach each other exponentially closely and in effect

appear to cross.

This effect is clearly visible in Figure 3. It should be

emphasized that the eigencurves do not intersect each other - they do

however approach each other with exponentially small separation at a

discrete number of points. These points of close approach give the illusion

of two distinct sets of curves for larger (p,s) values. These pseudo-curves

in fact correspond to eigencurves appropriate to the two regions on either

side of the interior minimum of the profile of Figure 2, which is evanescent

for sufficiently large values of p.

The interference effect of the two factors in (7.24b) is also
evident in Figure 4. It is more pronounced for higher values of ky, when the

interior evanescence is higher. The central plot of Figure 4 exhibits two

very closely separated zeros corresponding to modes 4 and 5. This is also
* evident in Figure 3 where the corresponding constraint curve appears to pass

through an intersection of the fourth and fifth eigencurves.

A The presence of highly evanescent interior regions thus need not
cause problems in searching for eigenvalues, but a complete numerical scheme

must be ablh to find and properly iOterpret multiple roots. Note that a more

sophisticated scheme could in effect avoid multiple root-finding by
appropriately subsectioning the profile, depending on the range of

- .&s-,parametet-s, and looking for separate families of elgenvalues appropriate to

tY

. .- ~ ~....'-.-,...'... .. *..- -t.,~.....- . . .-- . . .
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each section, as defined by (7.24b). These eigenvalues could then be

appropriately sorted later. This method would correspond to finding zeros in

the separated factors as in (7.24b) when evanescence is significant, but

involves additional 'bookkeeping' for the various regions. Note that in

terms of the parameters (p,s), the physical eigenvalues all have s>O, so

that regions of evanescence are controlled only by the parameter p. A
subsectioning approach would then be easiest to implement for problems

requiring eigenvalues at fixed values of p (i.e. w 2 ). For the moving source

problem however, both p and s are constrained to a hyperbola, and so the

number and extent of evanescent regions varies with the parameter v, thereby
presenting additional complications in implementing a subsectioning scheme

of this type. Such an approach was not found necessary for finding

eigenvalues in the profiles used to date, however.

(h) Computation of the Eilenfunctions

As noted above, interior evanescent layers may induce numerical

multiple zeros for certain values of the parameters (p,s). The problem, and

common cause of "instability" in the presence of evanescent regions, comes

in computation of the corresponding eigenfunctions.

For example, in the three layer profile above, it will prove
difficult to evaluate the "true" eigenfunctions by integration in one
direction due to the exponential smallness in the centre region. It is

easier to compuu. the "modified" eigenfunctions described above however, by

integrating inward from each boundary to a reference depth in one
oscillatory layer, and then repeating the procedure for a second reference

depth in the other oscillatory layer.

Thus in the general profile, the presence of interior evanescent

regions may cause artificial amplification in construction of
eigenfunctions, if the reference depth is not chosen appropriately.
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A "standard" 7 N 2 profile has a single peak (thermocline) at some

depth. The N2 tapers to zero toward the mixed surface layers and also toward

the bottom. There are no multiple eigenvalues for such a profile, and

computation of the eigenfunctions is easily handled 25 by choosing a

Sreference depth zr in the layer containing the maximum N2 -value. The ccaled

eigenfunctions t are evaluated from the surface down to zr and from the

bottom up to zr. These are then suitably matched at Z=Zr, and finally, the

exponential factors (7.22) are included to produce exponential decay through

any evanescent layers toward the boundaries.

4 In the presence of interior evanescent regions, the above

procedure niust be modified, and the definition of the eigenfunctions

modified as was done in the case of the symmetric three-layer profile above.A In parameter ranges where the zeros of the Wronskian are woll-separated,
I4there is no problem. The matrix product (7.20b) for the current eigenvalue

can be split into subproducts over regions separated by evanescent layers

according to some prechosen cutoff. (This is easily accomplished by

i~ - examining Im{Q,} for each layer. ) Specifically, for each group of adjacent

interior evanescent layers, a depth zp may be defined at the "centre of

evanescence". Successive such points then decompose the profile into

alternating regions, each comprising a central oscillatory section, bounded

on each side by an evanescent one. Thus the product g may be symbolically

written in the form

R " (7.25a)

1 with each term having the symbolic form

R' EOE, (7.25b)

. where the subscripts E and 0 here indicate evanescent and oscillatory; one

of the terms E may in fact be the identity matrix near a boundary. One or

~ more of these matrices will have a zero in its (1,2) entry, if the
partitioning cutoff is numerically large enough to induce factoring as in

(7.24b).

4.>
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If the zero is a simple one, then a reference depth within the

(unique) subsection with an (approximate) zero in its (1,2) entry is chosen.

Construction of the eigenfunctions then proceeds as in the case of a single

thermocline by integration of the scaled eigenfunctions t to this chosen

reference depth. After matching at the reference depth, inclusion of the

exponential "tailsu represented by the functions X over the intervals (OZr)

and (Zr'd) effectively zeros contributions in other regions.

In the case of an eigenvalue of multiplicity 'i', there will be

'W' such regions, The eigenvalue is counted m times, and m (disjoint)

eigenfunctions constructed from it by repeating the above procedure for a

reference depth chosen once within each of the m regions containing zeros.

The net effect is to produce an eigenfunction which pertains to

the subsection in question and has exponentially small (numerically zero)

amplitude elsewhere. The procedure thus automatically induces a modified

eigenfunction expansion as discussed for the example above, and properly

accounts for channelling of energy in interior ducts; it is the source term

which selects the appropriate eigenfunction combination.

Figure 6a shows the first, eleventh and twenty-first

eigenfunctions over the upper 4000m of the profile of Figure 2. These have
2 2been normalized so that , = Nmo. (see Equations (3.6a) and (7.30a)). The

corresponding values of k and co are (7T/768) rad m" and 0.5 ms-

respectively. For such a small wave number there are no significant

evanescent regions except for the bottom section. These long wavelength

components 'see' the entire profile.

The effects of interior evanescence and eigenfunction

modifications are considered for modes 4 and 5 near the central k value

illustrated in Figures 3 and 4. This central ky = j/3072, J-271,

corresponds to a pair of very closely separated zeros in the Wronskian D(v).
Although it is not apparent from the Figures, the two zeros are in fact

easily resolved numerically, yet graphically illustrate the eigenfunction
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behaviour. Figure 6b shows Mode 4 corresponding to j-269 and j=273, while

Figure 6c presents Mode 5 for the same pair of ky values. The two

eigenfunctions exhibit the opposite behaviour in the upper and lower

oscillatory sections of the profile.

With reference to Figure 3, it is evident that the point of

closest approach of modes 4 and 5 for the full profile corresponds to the

first mode of the lower oscillatory subsection of the profile (i.e. the

first apparent 'curve' with vertical asymptote near p=O.8), and to the

fourth mode of the upper oscillatory region. Thus the eigenfunctions would

be expected to have three zeros tn the upper section and no zeros in the

lower one, as is evident in Figures 6b and 6c.

In Figure 6b, the upper plot is for a ky-value slightly to the

left of the 'intersecti.on' point. As is evident from Figure 3, this

corresponds to mode 1 of the lower section, and so is computed for a

reference depth there, and decays exponentially toward the boundaries. The

lower plot of Figure 6b is for a slightly higher ky, to the right of the

'intersection' point and so strongly excites mode 4 in the upper section,

where the reference depth was chosen.

In Figure 6c, the opposite behaviour is exhibited for mode 5. The

only difference is the sign change in the lower section, which is due to an

additional zero within the evanescent region, and accounts for this

representing mode 5 for the full profile. However, for the purposes of

evaluating a fluid dynamical field in which the modes are summed and

integrated after inclusion of a source term, it is evident that the 'label'

(mode number) applied to a particular mode is of little importance. A source

in the lower section, for k values near the above 'intersection' point,

excites mode 1 of the lower section, regardless of the fact that this is

labelled either mode 4 or mode 5 for the full profile for adjacent ky 's.
9

For purposes of illustration, Figure 6d shows both modes 4 and 5

plotted together for the above pair of k values. Due to the exponential
~~Y
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Figure 6b. Normalized eigenfunction for mode 4, for two closely separated
intermediate values of k one on either side of the central constraint
curve shown on Figure 3. The presence of interior evanescence causes the
sudden behaviour change. For the upper value, the eigenfunction looks like
mode 1 appropriate to the lower section of the profile in isolation. For the
lower plot, it looks like mode 4 appropriate to the upper section. This
behaviour can be expected from Figure 3.
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Figure 6c. As in Figure 6b, but for mode 5 of the full profile. The
behaviour is reversed for the two kvalues.
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7 Figure 6d. Figures 6b and 6c plotted together to illustrate the possibility
of ambiguity or instability in a standard shooting method for eigenfunction
computation. Both the eigenfunction and its derivative are exponentially
small in the interior region, and curves looking like any one of the 6 plots
of Figures 6b through 6d may be acceptable numerical solutions near closely
separated eigenvalues.

smallness of the eigenfunctions in either the upper or lower sections of the
profile, these two curves are approximately what is obtained from the sum
and difference of modes 4 and 5 near the intersection point. If the
evanescence were sufficiently large for the eigenvalue to be a double one in
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a numerical sense, then a pair of eigenfunctions looking like the upper and

lower curves of Figure 6d would be an acceptable solutions, the upper one

connected by a cosh term and the lower one by a sinh term in the evanescent

region, precisely as occurred for the symmetric three-layer example above.

For numerical purposes however, it preferable to work with the modified

forms of Figures 6b and 6c.

(i) Connection with Global Matrix Methods

There is a close connection between the "propagator" approach for

solving the differential equation stepwise, and "global matrix" methods

Specifically, if 01 denotes the amplitude of a solution of the differential

equation at the ith interface (i=O.. .n), then it may be shown from the

propagator equations (by eliminating the interface derivative values 4')

that the interface values satisfy the three-term recurrence relation:

a, O1-, + (bi+b+1i) 01 + a+j 1 1+1 = 0, (7.26a)

where

a, q1/sin(qjh1 ), (7.26b)

b, +qjcos(qjh1 )/sin(qjhj), (7.26c)
and

1/
q 1 (7.26d)

Together with the boundary conditions o = n 0, the above is equivalent

to a homogeneous tridiagonal (n-l)x(n-l) matrix system:

b1 +b2  a2  0 0 Y0 0

a2  b2+b3  a3  0 Y2

0 a3  b3 +b4  a4  0 0

0* 0

an-1 bn-i+b 0
(7.27a)

I.. . . .. . . . .. .. . . . . I l + . . . . • I " . . . . . . • • - I . . .
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which may be written concisely in matrix form as

Cýy 0 0, (7.27b)

where the matrix/vector notation here refers to dimension n-1. For a non-

trivial solution det(C)=O. In the presence of an interior highly evanescent

layer, one of the a's in (7.27a) will be exponentially small and so may be

numerically zero in a computer implementation. In this case, the system

(7.27b) may be written in partitioned matrix form as:

20
0 C2J Y2(7.28)

In this case, there is again a factorization in the eigenvalue criterion,

since

det(C) = det(C1 ) det(C2 ). (7.29)

The coupling between the pairs in the partition is absent. If det(C1 )=O,

then a numerically acceptable solution to (7.29) has the form (y1 ,0), and

similarly if det(C2 )=O a solution has the form (0,y 2 ). In the case of a

coincident pair of eigenvalues, the interpretation is once again a pair of

disjoint eigenfunctions {(y 1 ,0),(0,Y2 )}, the selection of which is again

made by the source term. An alternative pair of acceptable solutions is any

pair of linearly independent linear combinations of the above pair, and in

particular the sum and difference, namely [(y 1 ,±y2 )1.

24



-62-

(J) Integrands for the Fields

The preceding discussion has explained how eigenpairs (Pm,Sm) may

be computed for a specified set of ky values, and how a corresponding set of

(possibly unnormalized) eigenfunctions may be computed in the modified sense

described above. The next step is construction of the various terms needed

for evaluation of the fields, as given by Equations (6.14a) and (6.15)

through (6.21).

The normalization factors (3.6a) are most easily computed

directly from the definition by integration:

2 2

= N'.. J' v(z) 'm(z) dz. (7.30a)

The integration here is done by breaking it into a sum over individual

layers and integrating the various terms (which are simple trigonometric or

hyperbolic functions) analytically. It is also easy to evaluate the related

integrals

2 d2
2. f. 0;(z) dz (7.30b)

simultaneously. The slopes s;(p)>O of the eigencurves may be expressed in
terms of these integrals. Repetition of the calculations which lead to

(6.4), in terms of the new parameters (p,s), leads to the equation

fd s•(p) (V-p) - psM(p) 2 2 dz O,

from which it is seen that

,2 2[p
s S(p) = S�m / [P m ]" (7.31)

The phase velocities and horizontal total wavenumbers follow from (7.13)

k2  sp, c2  N / s (7.32)

.~ i .......
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Values of kX are either zero or are obtained from

2kx ps, (7.33)

depending on the field integrand under consideration. Values of kx and k

will be imaginary for p<O. The other quantity of interest is the derivative

(6.4), which in the present variables translates to

d =m/dk Nmax I [s,(p) + p s.(p) ]. (7.34)

With these results, and a description of the source transform So, all of the

terms in the integrands (6.15) may be computed.

Figure 7 shows the first 21 real eigenvalues kxm(ky),

corresponding to (7.33). These correspond to the singular curves in the

(kxtky) plane, which were of concern in evaluation of the inverse Fourier

transform (5.4). These curves are again for the profile of Figure 2, but

with a source speed of 2.5ms". For larger k-values, there are again clearly

two families of curves, which give the illusion of intersection,

correspondi j to the two peaks in the profile. For each N2 maximum taken in
2 2 2isolation, real frequencies would be limited to w < Nmax, and so k<

2 2N ax/C 0 . For the upper peak, N ax/C=O .01rad/m, while for the lower peak,

the corresponding value is O.O05rad/m. The two families of curves clearly
display asymptotic approach to these values. All curves pass through the

origin; for this profile and source speed, all modes are super-Froude.

The phase velocities corresponding to these same modal curves are

shown in Figure 8. All phase speeds are less than the source speed, and show

a monotonic decrease both with mode- and wave-number in accordance with
7known results . Figure 9 contains plots of the ratios kxm(ky)/k, as a

""unction of ky. For this combination, it is evident that all ratios approach

a non-zero limit as ky approaches zero. These real eigenvalues correspond to

the radiating internal wave system. The above limiting ratios are related to

the angles of propagation of the longest horizontal wavelengths of each
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Figure 7. Plots of the first 21 elgencurves in the horizontal wavenumber
plane for a source movIng at 2.5 ms. This is faster than all of the phase
speeds of the internal waves, and so all pass through the origin. Units for

.1 ~both axes are rad m.
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1Figure 8. Phase velocities (ms) for the curves depicted in Figure 7,
plotted as function of cross-track wavenumber (rad m)
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Figure 9. Ratios of kx/k for the curves of Figure 7, plotted as a function

of k. These are all nonzero for ky=O, indicating that all internal wave

Selements have a cross-track component to their propagation direction and so

Sform a diverging wake.
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mode. The fact that they are all non-zero indicates the ex: cted results

that all waves in the wake are divergent; the-e are :, transverse

components.

Plots similar to the above were also :omputed for the lnwer

source speed co = 0.5 ms-. From Figure 8, it is eident that for this

source speed, three sub-Froude modes ( c < cm(O • would be expected in

this case. Plots of kxm(ky) vs ky for this combination are shown in Figure

* 10. The upper three curves exhibit the expected non-zero k.-values as ky

approaches zero - these correspond to modes containing transverse wave

systems whose longest components have crests oriented across-track. The

associated phase velocities for this source speed are shown in Figure 11,

and show the effect of the pole constraint Icokl IkcpI which implies that

ip 1p4 ;c9Ic - the upper three curves are clearly forced to a limit at the

source speed co = O,5ms-'.

(k) Computation of the Fields

The final step is the numerical implementation of (6.14a). As

noted earlier, the integral itself is computed by FFT methods, and so for

any fixed values of (x,z), it is very efficient to compute many y-.values.

However, the problem of computation of extensive sets of field points

requires some consideration for efficient computatir•n. Implementation of the

methods of this report has been mainly concernrAJ with construction of

V horizontal (x,y) or vertical (y,z) sections of the fields at a fixed value
/ of the third coordinate. These ar3 convenien'ly visualized as two-

dimensional "images" on a video display, for example.

Since the output fields are real, it suffices to compute only the
positive half of the ky spectra. If the physical fields are to be computed

3 on NY y-points with uniform spacing A, the spectra are then computed/ • ~(sampled) r-i ne points (k,, : 2rj/(NA,); jO,...,Ny/2-1 1. FFT inversion

will then give a representation of the physical fields on periodically
replicated sets of values Uyq, q-1...NY}. For this set of ky values, the
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Figure 10. Similar to Figure 7, but for the slower source speed 0.5ms"'.
This is slower than the zero-wavelength phase speeds for the first three

modes, and so the corresponding values of kx are non-zero. This gives rise
to transverse components in the wake.
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Figure 11. Phase speeds for Figure 10. Note that the moving source
~~%¶ ~const-aint forces the phase speeds to be no greater than the source speed.

three iets of~ eigenvalues (real, imaginary, and zero) corresponding to the

4 three c'asses of k,-pales of (L".15), may be computed once for a given

profile andi source speed, andi saved for future use.

;c~
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This data set is independent of source details and spatial

coordinates. Thus it may be used repeatedly for different source models,

source depth, and 'observation' coordinates. The eigenfunctions are computed

as needed at run-time - the amount of data ( modes x ky-values x layers ) is

too great to justify saving. In general it will be desired to compute the

fields on a set of values [xP, p=1...Nx} and {zr, r=1...Nzj. As there is

some numerical expense involved in construction of eigenfunctions, it is
therefore most efficient to construct, at run-time, arrays (ef (6.14a) ) of
the general form [ T(x,kyj,zr); j=O...Ny/2-1, r=1...Nz 1. These are then

inverted. Computation of many x-values entails computation of exponentials
of the form exp(-ixkx). These also prove to be a significant computational

expense since there is one kX-value for each k y and mode number in each mode

set. Significant efficiency is therefore realized by computing fields on a
uniform set of x-values with spacing Ax. The pair of two-dimensional arrays
exp[-ixlkxm(ky)] and exp[iAxkxm(ky)] may be evaluated at run time, and

successive x-values obtained by multiplication using

exp[-i(x-Ax)kx] exp[-ixkV] exp[+iAxkx].

Sample results will be displayed in the next section.

... ..

......
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8. WtAKE EXAMPLES

This section is concerned with presentation of some examples of

fluid dynamical fields computed from the methods described thus far. For

purposes of illustration, the example caiculations will be mostly based on a

simple Rankine doubletS', consisting of a point source of strength 'i' at

x=+a and a sink of equal streng•h at x-a. In the notation of Equation

(4.1), the mathematical descriptior is

SO(x,y) = m6(y)[ &(it-a) -6(x+a)] (8.1)

hence

S(k) = (im/r) sin(akx).

It is possible 5 to fit the parameters {m,aj to the diameter and length of

solid body with rotational symmetry about its long axis. For illustrative

, purposes, the values of 100m and 8m have been used for the length and

diameter respectively. All examples in this Section will be based on the

profile of Figure 2. The two source speeds 2.5ms- and O.5ms- used for

discussion purposes above will be considered for source depths z. = 35m and

z3 = 124m, corresponding to the centres of the upper and lower thermoclines.

As well as the independent fluid fields (u,v,w,ý), the total energy per unit

volume

2 2 2 'e 2
E(x,y,z) Epo(z) ( u + v I w +N2• ) / 2. (8.2)

in the wake is also of interest. For the source (8.1), Equation (6.22) is

appropriate. Computations for all of the examples in this Section are based

on (6.22), incorporating the first 21 terms in each of the three infinite

sums there.

Example 1 considers the fields generated at the surface by the

above doublet source travelling at the slower speed in the upper

thermocline. Due to the boundary conditions, w and • are both zero, and so

I"
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only the horizontal currents u(x,y,O) and v(x,y,.O) are present. These were

computed for a two-dimensional set of x and y values. The results are

displayed in Figure 12 as pseudo-images, wherein the grey level corresponds

to (signed) current value, white being the largest, and black the smallest.

Computations were done at a uniform spacing of 6m in both x and y-

directions. There are 512 samples in the along-track direction and 1024
samples across-track. The physical size of the image is from -2.691km to
0.375km along-track, and from -3.072km to 3.066km across-track. The centre
of the source is at x=y=O in the reference frame chosen. Results have been

zeroed between the leading and trailing edges of the source in accordance
with the range of validity of Equations (6.15). To produce acceptable

images it is necessary to clip the data to some desired range, and map this

range onto the available 256 grey levels of the display unit. In addition,
it proved desireable to take the logarithm of the energy density image prior
to the scaling process. Table I contains values of the actual computed

TABLE I.

DATA AND IMAGE RANGES FOR FIGURE 12.

Field: u ( rmis- ) v ( mms ) log,, E (mj m 3)

minimum -0.408 -1.402 0

maximum +2.690 +1.402 0.559

black -0.120 -0.120 -7.0

Swhite +0.120 +0.120 -4.0

maximum and minimum value for each of the fields u,v, and log1 ,E, as well as
the values corresponding to black and white on the images, to which out-of-

range values have been clipped.Points to note include the transverse waves

clearly visible in the along-track velocity component, and the localized
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Figure 12. Representationa of the surfe e current components generated by a
Rankine doublet source moving at 0.5ms in the upper thermocline. The left-
hand image is for the along-track current and the central one for the cross-
track coiponent. Scaling values are indicated In Table 1. Note the presence
of the expected transverse waves associated with the first three modes as
explained In the text. The image size covers roughly 3 km along-track by 6
km cross-track at 6m steps as explained in the text. The images have been
zeroed between the extremes of the source, where the Integration by residues
breaks down. Note the localized disturbance near the source arising from
Inclusion of the imaginary modes. The right-hand image represents the ( base
10 ) logarithm of the energy density in the wake.

disturbance in the vicinity of the source. Evidently, most of the energy

density at the surface is in the divergent waves. There is also significant

energy density in the local disturbance.

Kl."~
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Example 2 is intended to illustrate the effect of source depth on

the surface fields. Thus all parameters are the same as in Example 1, except

that the source is now travelling in the lower thermocline. Pseudo-images of

the surface velocity and logle energy density, analogous to those of Figure

12, are presented in Figure 13. Data ranges and clipping values for this

image set are given in Table II. The main point to note is the 'filtering'

of shorter wave components by the interior minimum in the N2 profile. This

region has higher evanescence for shorter waves (higher wavenumbers), and so

short wave-length energy generated in the lower th.ermocline is largely
confined there - this will be illustrated further below.

TABLE II.

DATA AND IMAGE RANGES FOR FIGURE 13.

Field: u ( mm s- ) v ( mm s- ) logle E (mj m-3)

minimum -0.292 -0.611 0

maximum +1.096 +0.611 -0.221

black -0.200 -0.060 -7.0

white +0.200 +0.060 -4.0

Example 3 is meant to demonstrate the effect of increasing source

speed, and uses the higher value co = 2.5ms-. Other conditions remain as in

Example 1. With reference to Equation (7.12), it is evident that the effect

of increasing c0 is to decrease the parameter sc. Thus the constraint

hyperbolae (7.16a) are all shifted toward smaller values of p and hence k on
account of (7.13). But since k is constant, the effect is to reduce k at

-~ . ~Y x n
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Figure 13. As In F Ig ur a 12, but for a source moving In t he aIowe r
$ thermocline. Note the filtering of shorter waves due to the Interior minimum

In the stability profile.

each ky. Thus every Fourier component k in the wake propagates at an angle

directed more closely to the cross track axis, and the 'V' patterns defined

by the wake become narrower. To accommodate this lengthening of the image,

computations were done on a different mesh, specifically a uniform sample

length of 3m in both x and y-directions. There are 1024 samples in the

along-track direction and 512 samples across-track. The physical size of the

image is from -2.8665km to 0.2025km along track, and from -0.168km to
0.765km across track. Surface field images are shown in Figure 14, with data

!:i

range and clipping values given in Table III. There is clearly no transverse
'j, component to the wake, as expected. Also, note the greatly increased effect

P'. =

3
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Figure 14, As In Figure 12, but for a source moving at 2.5ma Pixels here

cover 3m by 3m, while the total Image covers roughly 3km along-track, and

,"'Y'1,5km across-'trok The localized disturbance Ie stronger duo to the lat-ger
source strength of the doublet sourca. As expected, only diverging waves
appear In the wake.

of the localized disturbance. The source strength mi of the doublet is
~a. ~ N'.- rouhly ropotional to the source speed, and therefore resultsina

Z~i increased local flow near the source.
k.
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TABLE III.

DATA AND IMAL' RANGES FOR FIGURE 14.

Field u( mm s- ) v ( mm s- ) logl 0 E (m, m-3 )

minimum -0.171 -4.901 0

maximum +9.304 +4.901 1.636

black -0.020 -0.020 -8.0

-A

S~white +0.020 -.

The next two examples deal with vertical sections through two of

the above wakes. Both examples are for the lower source speed, and

correspond to the two source depths. The vertical sections are taken at x
-5.5km. The fields were computed on the same y-points as for Example 1, i.e.
1024 points at Sm steps. Vertical coordinates consist of 512 points at im

separation, beginning at z-0. ihis vertical range wis chosen for ease of

display, and covers only the upper portion of the water column. For these

sections, all of the fluid dynamical fields are present, and may be

conveniently presented in the form o. images as above.

Example 4 is as jut described, with the source in the lower
tnermocline. The upper four images of Figure 15 represent (u,v,w,C), with

scaling values given 'n Table IV. The vertical direction represents depth,

while the horizontal direction represents -ross-track distance. These

'-Ni

'4 .....
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Figure 15. Portion* of a vertical section through the wake of Figure 13, at

a distance of 5.5km downstream from th source. From to obto.and left

to right, the first fi ve Image* depict the fluid velocity components u,vw,w

the Isopycnal displacement sý, and the energy density E. The Images cover the

centrol 3 km across-track (horizontal) In the upper 511 a of the water

(vertical). Note that moot of the onergy Is confined to the lower

thermocline where the source Is travelling. Longer ~voves are excited on the
upper thermocline. The lower right Image shows the energy density, on the

same c~ordinates. for a sourc, moving In the upper thermocilme as In Figura

12

,v z
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TABLE IV.

Data and image ranges for Figure 15.

El is for the deeper source, E2 for the shallow one.

Field Minimum Maximum Black White

u (mm/s) -0.107 +0.165 -0.107 +0.165

v (mm/s) -0.395 +0.395 -0.395 +0.395

w (nm/s) -0.641 +0.657 -0.641 +0.657

S(cm) -5.977 +6.503 -5.977 +6.503

E1 (mJ/s) 1.4 x 10- 0.233 1.4 x 10- 0.045

E2 (mJ/s) 4.7 x10-j 8.545 4.7 x 10- 0.489

sections were computed on the basis of 1024 cross-track points, but only the

central 512 y-points, with indices from 256 to 767, are displayed. Note the

disparate (6-to-I) scales along the two directions. The associated energy

density in the vertical section is shown in the lower left image. Clearly,

the higher frequencies are confined to the lower thermocline. There is

however, significant 'leakage' of onger wavelength energy into the upper

thermocline (which has h hgt,:r stratification than the lower one). This

longer wavelength energy is ai fdct iehat makes its presence felt at the
surface, as shown in Figure- 1'.. Example 5, consists of the same model, but

with the source in the uoper thermocline. The lower right image of Figure 15

shows the energy densitj, n, the sampt, coordinates as for Example 4. This

represents a vertical sectTon through the wake of Figure 12. The energy is
clearly confined almost enirely to the upper tho"mocline. The velocity and

.. ..'h ...
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displacement fields are not 6,cpicted for Example 5, but for reference, the

ranges of these components are given in Table V.

TABLE V.

DATA RANGES FOR THE FIELD COMPONENTS OF EXAMPLE 5

Field Minimum Maximum

u (m•n/s) -0.227 0.285

v (rm/s) -2.76 2.76

w (mml/s) -1.84 1.74

S(cm) -15.6 15.1

T4

-4A1
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9. Comparison With Measured Data

As a final example, a comparison with measured data is

considered. The details of the measurements are discussed in detail

elsewhere1 . Basically a surface ship (CFAV Endeavour) generated a divergent

internal wave wake by steaming in a straight line at constant speed. After a

time, the ship made a wide turn, and made a measurement cut across its own

wake. The data of interest for present purposes were obtained from current

meters mounted ahead of the bow at a nominal depth of 1m. Ship position

information was obtained from a trio of shore-based trisponders. The

measured current velocity data were reduced to a component along the

measurement ship's track. Those data are displayed in Figure 20 of Reference
1.

Model currents were computed using a layered representation of

the profile contained in the above reference, under all of the assumptions

and simplifications discussed earlier. The source type used was a more

complicated one 29 than the simple Rankine doublet. The measured positions at

which current data were available were converted into positions relative to

4the steady state coordinate system of the present model. The synthetic

current data were then sampled along this track and converted to a component
along the measurement track to produce a data set which may be directly

compared with the measured data. The results of the comparison are presented

in Figure 16. The measured data is the lighter curve, while the darker curve

represents the model data. The data, in units of ms-, are plotted as a
function of measurement time. It is evident that in this case at least,

reasonable agreement was obtained. The predicted amplitudes agree well,

although the wavelengths are perhaps slightly longer than measured.

Considering all of the approximations in the model, and the physical

realities of the experimental situation, the agreement serves as at least an

* indication that linearized internal wave theory is capable of realistic

A predictions.
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F i gure 16. Comparison of internal wave currents predicted by the model with
measured data. The lighter curve represents data measured in the internal

wave wake of a surface ship. Corresponding data predicted from the model are
given by the dark curve. The current is the component along the measurement

track (ms-) as a function of measurement time.
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10. Concludlng Remarks

It has been demonstrated that linearized inviscid internal wave

theory is capable of providing realistic internal wave field estimates in an

efficient and straightforward manner. Relatively simple modifications to

;.J standard normal mode expansion techniques permit inclusion of both the

radiating and near-field contributions. These modifications also provide an

alternative Green's function representation, which has a higher rate of

convergence in the modal sums. All pertinent fluid dynamical variables can

be easily computed together.

It is also demonstrated that profiles possessing multiple

thermoclines need not cause major difficulties. For certain wavenumber
regimes, such profiles will possess regions of high evanescence, a common

cause of "instability" in eigenfunction computations. Such profiles will
generally cause multiple roots to arise in the Wronskian in a numerical

scheme. Appropriate modifications to the concept of an eigenfunction

expaitsion are readily introduced to handle such profiles, and properly
account for trapping of energy generated with a thermocline.

~k



-84-

REFERENCES

1. B.A.Hughes and T.W.Dawson,"Joint CAN/US Ocean Wave Investigation

Project. DREP Measurements of Surface-Ship Produced Internal Wave

Wakes in Knight Inlet, B.C. 1983", DREP Technical Memorandum 85-20,

Defence Research Establishment Pacific, Forces Mail Office, Victoria

B.C., Canada, VOS IBO, 1985.

2. A.H. Schooley and B.A.Hughes, "An Experimental and Theoretical Study

of Internal Waves Generated by the Collapse of a Two-Dimensional Mixed

Region in a Density Gradient", J. Fluid Mech., 53, 159-175, 1972

3. J.M. Bergin, "Internal Wave Generation Caused by the Growth and

Collapse of a Mixed Region", NRL Report 7568, Naval Research

Laboratory, Washington D.C., 1973.

4. John W. Miles, "Internal Waves Generated by a Horizontally Moving

Source", Geophysical Fluid Dynamics, 2, 63-87, 1971.

5. L.M. Milne-Thomson, "Theorelical Hydrodynamics", 3rd ed., MacMillan &

Co. Ltd., London, 1955.

6. Michael Milder, "Inturnal Waves Radiated by a Moving Source. Volume I

- Analytic Simulation", RDA-TR-2702-007, R&D Associates, PO Box 3580,

Santa Monica, CA 90403, Feb. 1974.

7. P.H. LeBlond and L.A.Mysak, "Waves in the Ocean", Elsevier Scientific

Publishing Company, 1978.

8. James Lighthill, "Waves in Fluids", Cambridge University Press,

Cambridge, 1978.

9. Robert D. Moger, "Internal Gravity Waves Generated by a Moving Source

in a Stratified Fluid", University of Denver, Denver Research

Institute, Report MS-R-7502, 1974

3.. ... ....



-85-

10. James A. Young, Robert K.-C. Chan, James Riley, and Denny Ko.

"Development of an Internal Wave Computer Code", Science Applications,

La Jolla, California, Report SAI-74-598-LJ, 1974.

11. Henrik Schmidt and Finn B. Jensen, "An Efficient Numerical Solution

Technique for Wave Propagation in Horizontally Stratified Ocean

Environments", SACLANTCEN Memorandum SM-173, August, 1984.

12. "Oceanographic Observations at Ocean Station P, 27 July - 13

September, 1972, Volume 102", Pacific Maritime Report 81-16, Institute

of Ocean Sciences, Victoria, B.C., 1981.

13. O.M. Phillips, "The Dynamics of the Upper Ocean", 2'd ed., Cambridge

University Press, Cambridge, 1977.

14. G.K. Batchelor, "An Introduction to Fluid Dynamics", Cambridge

University Press, Cambridge, 1967.

15. Philip M. Morse and Herman Feshbach, "Methods of Theoretical Physics",

MCGraw-Hill Book Company, Inc., New York, 1953.

16. William E. Boyce and Richard C. DiPrima, "Elementary Differential

Equations and Boundary Value Problems", John Wiley & Sons,Inc., New

York, 1969.

17. Allan D. Pierce, "Propagation of Acoustic-Gravity Waves in a

Temperature- and Wind-Stratified Atmosphere", J. Acoust. Soc. Amer.,

37, 281-227, 1965.

18. Michael Porter and Edward L. Reiss, "A Numerical Method for Ocean-

Acoustic Normal Modes", J. Acoust. Soc. Amer., 76, 244-252, 1984.

19. Michael Milder, "User's Manual for the Computer Program ZMODE", RDA-

TR-2701-001, R&D Associates, PO Box 3580, Santa Monica, CA 90403, July

1973.



-86-

20. Thomas H. Bell, Jr., "Numerical Calculation of Dispersion Relations

for Internal Gravity Waves", NRL Report 7294, Naval Research

Laboratory, Washington D.C., 1971.

21. E. Ammicht and D.G. Stickler, "Uniform Asymptotic Evaluation of the

Continuous Spectrum Contribution for a Stratified Ocean", J. Acoust.

Soc. Amer., 76, 186-191, 1984.

22. Allan D. Pierce, "The Multilayer Approximation for Infrasonic Wave

Propagation in a Temperature- and Wind-stratified Atmosphere", J.

Comp. Phys., 1, 343-366, 1967.

23. Myron Fliegel and Kenneth Hunkins, "Internal Wave Dispersion

Calculated Using the Thomson-Haskell Method", Journal of Physical

Oceanography, 5, 541-548, 1975.

24. C.O. Hines, " A Critique of Multilayer Analyses in Application to the

Propagation of Acoustic-Gravity Waves", J. Geophys. Research, 78,
265-273, 1973.

25. Dale D. Ellis, "A Two-Ended Shooting Technique for Calculating Normal

Modes in Underwater Acoustic Propagation", DREA Report 85/105, Sept.

1985.

26. R.C.Y.Chin, G.W.Hedstrom and L.Thigpen, "Matrix Methods in Synthetic

Seismograms", Geophys. J.R. Astr. Soc., 77, 483-502, 198-1.

27. Gary Brooke, DREP, private communication, 1987.

28. Ghlslaln R. Franssens, "Calculation of the Elasto-Dynamic Green s
Function in Layered Media by Means of a Modified Propagator Matrix

Method", Geophys. J.R. Astr. Soc., 75, 669-691, 1983

29. B.A. Hughes, DREP, private communication.

) .



DISTRIBUTION

REPORT: DREP REPORT 88-7

TITLE: The DREP Internal Wave Normal Mode Model-Theoretical Background.

AUTHOR: T.W. Dawson

DATED: April 1988

SECURITY GRADING: UNCLASSIFIED

3 -DSIS BRITAIN
Circulate to:
DRDM Ministry of Defence
DSP 1 - DRIC

1 - DREV
1- DREO UNITED STATES
1 - DREA

3 - DTIC
1 - ORAE Library 1- Naval Research Laboratory
I - D Met Oc Washington, D.C. 20375
1 - Maritime Tech Library 1 - Environmental Research Inst.
1 - Bedford Inst of Oceanography of Michigan

Library P.O. Box 8618
1 -NRC Ann Arbor, Michigan 48107
1 - RRMC Dept of Oceanography Attn: Dr. R. Shuchman
1 - RMC
1 - CRC Library

3 -Applied Physics Laboratory
1 - CDLS(L) CDR Johns Hopkins Road
1 - CDLS(W) CDR Laurel, MD 20707
1 - DRA Paris 1 - Dr. R. Gasparovic

1 - Dr. R. Gotwols
1 - Great Lakes Inst. 1 - Dr. D. Thompson

University of Toronto

2- Naval Ocean Systems Center
1 - Canada Centre for Inland Waters San Diego, CA 92152

Burlington, ON L7R 4A6 1 - Dr. R.R. Buntzen
Attn: Mr. Mark A. Donelan 1 - Dr. R.R. Hammond

AUSTRALIA 2 - TRW Inc.
1 Space Park1 - Surveillance Systems Group Redondo Beach, CA 96278

Electronics Research Laboratory 1 - Dr. B. Lake
G.P.O. Box 2151 1 -Dr. K. Kwoh
Adelaide* S. Australia 5001
Attn: Dr. D. Cartwright

1 - Dynamics Technology Inc.
1815 N. Lynn St.
Suite 801
Arlington, VA 22209
Attn: Dr. S. Borchardt

... /2



(uontinued)

1 -Dr. R.S. Winokur
Assoc. Technical Director for
Ocean Science and International Program
Office of Naval Research
Arl i ngton, VA 22217

1- Defence Advanced Research
* Projects Agency,

1400 Wilson Blvd.
Arlington, VA 22209

1 - R&D Associates
P.O. Box 9695
Marina Del Ray, CA 90291
Attn: Dr. D. Holliday

1- Institute of Geophysics and
~iy Planetary Physics, A-025

Scripps Institution of
I4 Oceanography

La Jolla, CA 92093
Attn: Prof. W. Munk

1 Dr. Arthur Reed
9106 Warren Street
Silver Spring, MD 20910

;.'
½-] = I

'#1



UNCLASSIFIED

SECURITY CLASSIFICATION OF FORM
(highest classification of Title, Abstract, Keywords)

DOCUMENT CONTROL DATA
(Security classficatlon of title, body of abstract and indexing annotation must be entered wnen the overall document is classified)

1. ORIGINATOR (the name and address of the organization preparing the document 2. SECURITY CLASSIFICATION
Organizations for whom the document was prepared. e.g. Establishment sponsoring (overall security classification of the document
a contractor's report, or tasking agency, are entered in section 8.) including special warning terms if applicable)

Defence Research Establishment Pacific Unclassified

3. TITLE (the complete document title as indicated on the title page. Its classification should be indicated by the appropriate
abbreviation (S,C.R or U) in parentheses after the title.)

The DREP Internal Wave Normal Mode Model-Theoretical Background (U)

4. AUTHORS (Last name, first name, middle initial)

T. W. Dawson

5. DATE OF PUBLICATION (month and year of publication of Ba. NO. OF PAGES (total 6b. NO. OF REFS (total cited in
document) containing information. Include document)

Annexes, Appendices, etc.) 29

7. DESCRIPTIVE NOTES (the category of the document, e.g. technical report, technical note or memorandum. If appropriate, enter the type of
report, e.g. interim, progress, summary, annual or final. Give the inclusive dates when a specific reporting period is covered.)

Technical Memorandum 88-7

B. SPONSORING ACTIVITY (the name of the department project office or laboratory sponsoring the research and development Include the
address.)

DREP

9& PROJECT OR GRANT NO. (if appropriate, the applicable research 9b. CONTRACT NO. (if appropriate, the applicable number under
and development project or grant number under which the document which the document was written)
was written. Please specify whether project or grant)

DRDM-04

10a ORIGINATOR'S DOCUMENT NUMBER (the official document 10b. OTHER DOCUMENT NOS. (Any other numbers which may
number by which the document is identified by the originating be assigned this document either by the originator or by the
activity. This number must be unique to this document.) sponsor)

Technical Memorandum 88-7

11. DOCUMENT AVAILABILITY (any limitations on further dissemination of the document, other than those imposed by security classification)

( Unlimited distribution
D Distribution limited to defence departments and defence contractors; further distribution only as approved

I Distribution limited to defence departments and Canadian defence contractors; further distribution only as approved
D Distribution limited to government departments and agencies; further distribution only as approved

I Distribution limited to defence departments; further distribution only as approved

Other (please specify):

12. DOCUMENT ANNOUNCEMENT (any limitation to the bibliographic announcement of this document. This will normally correspond to
the Document Availabilty (11). However, where further distribution (beyond the audience specified in 11) is possible, a wider
announcement audience may be selected.)

no limitation

UNCLASSIFIED
SECURITY CLASSIFICATION OF FORM

DCDO3 2/06/87



SECURITY CLASSIFICATION OF FORM

13. ABSTRACT ( a brief and factual Summary of the document It may also appear elsewriarý in lthý' bovc of the document itself. It is highly
desirable that the abstract of classified documents be unclassified. Each paragraph of the abstract shall begin with an indication of the
security classification of the information in the paragraph (unless the document itself is unclassified) repre~sented as (S), IC), (R). or (U.

- ~ ,It is not necessary to inciude here abstracts in both offical languages unless the text is bi'inguall.

See Text

1 4. KEYVV'OlDS, DESCRIPTORS or IDENTIFIERS (technically meaningful terms or short phrases that characterize a document and could be
helplui in cataioguing the document They Should be selected so that no security classification is requ~red. Identifiers. sucr. as equiome"It
model designation, trade name, military Project code name, geographic location may also be included. if possible ý-evworos Should be selecteco
from a published thesaurus, e.g. Thesaurus of Engineering and Scientific Terms (TEST) and that thesaurus -identifiled. It it is niot Possible to

N. select indexing terms which are Unclassified, tie classification of each should be indicated as witn tre title.)

Internal Wa'~es
Nornidi Modes
Layered Approximation
Evanescent Layers
Wakes

""A'

UNCLASS IFIED

SECURITY Ci.ASSIFiCAT1ON Or 9CRIV


